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Abstract
Machine learning algorithms are increasingly used to shape high-stake allocations, sparking research efforts
to orient algorithm design towards ideals of justice and fairness. In this research on algorithmic fairness,
normative theorizing has primarily focused on identification of “ideally fair” target states. In this paper, we
argue that this preoccupation with target states in abstraction from the situated dynamics of deployment is
misguided. We propose a framework that takes dynamic trajectories as direct objects of moral appraisal,
highlighting three respects in which such trajectories can be subject to evaluation in relation to their
(i) temporal dynamics, (ii) robustness, and (iii) representation.
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1. Introduction
The adoption of machine learning (ML) algorithms for both automating and informing conse-
quential decisions has emerged as a prominent concern, sparking public debate and a vibrant field
of research investigating justice and fairness in algorithmic decision making (Angwin et al. 2016;
Barocas and Selbst 2016; Danks and London 2017). In this growing body of research on fair ML,
many works seek to orient algorithmic design towards the values of justice and fairness. In
particular, value specification proceeds by constructing “fairness metrics” intended to quantify
statistical disparities concerning the predictions or predictive performance of algorithms between
protected groups1 that we might think ought not to exist were we to find ourselves in an “ideally
fair” target state. Value implementation, in turn, involves technical modifications in algorithmic
design that are purported to be “fairness-enhancing” or “justice-seeking” insofar as they can alter
performance in order to satisfy the chosen fairness metrics as assessed on a given dataset. In
section 2, we argue that the standard methodology of fair ML research is a particular instance of a
broader methodology inML practice that explicitly considers values only in relation to evaluation
metrics used to assess and optimize predictive performance with respect to a static dataset. These
fairness metrics thus support the values of stakeholders in the same ways as traditional evaluation
metrics (e.g., simple accuracy). In this framing, the locus of moral appraisal2 remains restricted to

© The Author(s), 2021. Published by Cambridge University Press on behalf of Canadian Journal of Philosophy. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

1A term borrowed from the Civil Rights Act of 1964 in theUnited States, which species several protected attributes, including
sex, race, and ethnicity.

2We follow Hansson (2013) in using the term “moral appraisal” to cover both moral evaluation and moral prescription
(including interventions undertaken to satisfy these prescriptions).
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the properties of predictive models’ outputs with respect to static snapshots of historical data at
hand, in isolation from social and organizational context.

When deployed in complex social systems, however, the situated behavior of allocation policies
is also shaped by the interdependencies and shifting dynamics of the social contexts in which the
policies are embedded, including the real impacts of decisions on their subjects, the incentives that
they communicate to future subjects, and the feedback loops that emerge as decisions and input
information become coupled via their interaction with a shared environment. As a result,
moral appraisals that focus narrowly on the properties of allocation outputs—algorithm-based
or otherwise—in isolation from these broader dynamics can result in distorted evaluations, and so
undermine our prescriptive capabilities. In section 3, building on a nascent technical literature that
has begun to establish a longer-term perspective through theoretical economic models, simulation
studies, and empirical analyses, we argue that, faced with deployment dynamics, the standard fair
ML methodology cannot provide practical guidance and that its naive application, even when
intended to remediate injustices, can just as easily cause them.

The challenges raised by deployment dynamics are pervasive. They undermine the epistemic and
ethical underpinnings not only of the standard fair ML strategy, but also, and more generally, of
outcome-basedmoral appraisals that abstract away from these dynamics or else seek to absorb them
into static target states. Yet, any adequate framework for evaluating and regulating decision
procedures must contend with the situated dynamics of justice-seeking trajectories—the ways that
interventions on technical systems influence the evolution of the particular social systems in which
they are embedded.We thus consider two possible reorientations. In section 4, we critically evaluate
a proposal due to Elster (2013; see also 1992). According to this proposal, our epistemic limits in
reliably anticipating and, so, proactively planning for the consequences of social dynamics should
motivate us to scale back our ambitions. Instead of anchoring our evaluation and design efforts to
the achievement of some prespecified target state for decision outcomes, we ought to focus on the
decision procedures as direct objects of moral appraisal.

In section 5, we argue for an alternative framing that takes dynamic trajectories themselves as direct
objects of moral appraisal. We draw out three critical ways in which dynamic trajectories can be
subject to moral appraisal with respect to: (i) the temporal dynamics of trajectories, (ii) robustness of
trajectories, and (iii) the representation of trajectories. Our analysis of these considerations suggests
that trajectories ought to be regarded as direct objects of moral appraisal, not secondary consider-
ations to be absorbed in assessments of static states or contingent products of a procedure.

Before we proceed, a clarification is in order. In the next sections, we discuss a predominantly
technical approach to addressing societal concerns about algorithmic bias—namely, in terms of
developing and enforcing fairness measures. This does not mean, however, that there are no other
proposals about howwe ought to respond to these worries (Fazelpour andDanks 2021; Jobin, Ienca,
and Vayena 2019). For example, some have suggested organizational changes such as diversifying
the technical workforce. Others have argued for the need for more fundamental changes to our
social practices. Indeed, in certain tasks, we might decide against the deployment of machine
learning altogether. However, as will become clear, the challenges that we identify are not unique to
standard fair ML methods. Rather, fair ML simply provides a salient case study for thinking about
the challenges that must be addressed when evaluating and justifying proposed allocation pro-
cedures in complex, interactive social systems. These challenges remain whether or not the
procedure is algorithm-based.

2. Fairness by design: Standard methodological perspective
In this section, we first situate the standard methodology of fair ML by showing how explicit
discussions of values in the design and development ofML algorithms tend to be framed in terms of
questions about the choice of evaluationmetrics. In doing so, we clarify both the considerations that
are abstracted away from and the type of questions that might be explored in this framing. We then
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discuss the extension of this standard methodology to concerns about justice, fairness, and
nondiscrimination.3

2.a Machine learning in allocation-decision pipelines

Many allocative decisions are guided by beliefs about the likelihood of some event of interest. For
example, decisions to grant loans are typically guided by beliefs concerning the likelihood of
repayment. Similarly, hiring decisions reflect beliefs about a job candidate’s likelihood to be
successful (by some measure). The promise of ML tools in these domains owes to their ability to
mine associations from large collections of historical data to produce models that can reliably
estimate the likelihood of some event (the target) given the available context (the features). These
systems are typically developed using supervised learning. Suppose each individual i is character-
ized by some feature vector xi and target value yi. Given a dataset x1,y1

� �
,…, xn,yn

� �� �
sampled

from a distribution characterized by probability density function p x,yð Þ, the goal is to produce a
model f xð Þ that can successfully (by some measure) predict the target value for previously unseen
examples drawn independently from p x,yð Þ. Crucially, the framework’s validity, in a statistical
sense, rests on the assumption that the underlying distribution is truly fixed.4

Consider a university developing an ML algorithm to predict first-year student attrition. A
natural choice for the target ymight be a binary value 0 or 1 indicating whether the student returned
to enroll for their second year. Corresponding input features xmight include the student’smajor(s),
permanent address types (in or out of state), GPA for each semester, high schoolGPA, SAT score(s),
financial aid status (student loan, scholarship, or neither), etc. Indeed, university administrations
already use such predictive models to inform a variety of decisions to guide the allocation of scarce
resources such as admissions, academic support, counseling, and financial aid (Delen 2011; Herr
and Burt 2005).

However, decisions about how (if at all) to use these predictions depend on reasoning and facts
that are external to the statistical procedures and particular features that are used in the algorithm.
Critically, appropriate and responsible use depends on: (i) the decision of interest being translatable
(in some sense) into a statistical prediction problem; (ii) precisely which features to collect, which
target to predict, and how to measure them based on available data sources; (iii) how these
predictions are operationalized to drive actual decisions; and, as we will discuss in the coming
sections, (iv) the dynamics of deployments (see Mitchell et al. 2021; Fazelpour and Danks 2021).

In practice, developers of prediction systems tend to focus on the narrow set of value judgments
that can be expressed as evaluation metrics, abstracting away from these challenges of formulation,
measurement, and deployment (Selbst et al., 2019). In this narrower perspective, the data are taken
for granted, the deployment context ignored, and the central choice is simplywhich statistic (among
those computable from the observed data) to select as the standard of evaluation and objective for
optimization. This choice often depends on the aims and values of decision-makers and is typically
formalized in terms of quantitative evaluation metrics that are defined in terms of various
properties of the distribution of observed data.

In the simplest case, for example, we might measure a model’s classification performance by its
overall predictive accuracy in terms of the proportion of examples that the model correctly

3Prima facie, research in fair ML might be seen as an instance of a larger body of work on value-oriented or value-sensitive
design (Aizenberg and van den Hoven 2020; Friedman and Hendry 2019). In this literature, value specification and
implementation tends to proceed by means of a gradual, empirically informed, iterative translation of an abstract value into
more context-sensitive norms that can promote the value throughout an information processing pipeline, and ultimately
become concrete sociotechnical design requirements that could support those norms in deployment. In contrast, as we will
show, many works in fair ML tend to adopt a narrower focus analogous to the choice of appropriate evaluation metrics in an
engineering context, rather than value-sensitive design.

4Validity, more broadly construed, also depends on various other value judgements and assumptions discussed below, e.g.,
that the observed target variable is actually the outcome we care about, or that we agree on the correct measure of success.
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classifies. In other applications, we might care not only about overall predictive accuracy, but also
(or indeed more so) about how predictive errors are distributed across different types of examples.
Consider again the case of predicting student attrition. If only 10 percent of students in a
representative dataset drop out after the first year, then a model that simply predicts that everyone
will return for their second year will achieve 90 percent accuracy, but provide no useful information.
Clearly, this model fails to serve the interests and values of different stakeholders (e.g., universities,
families, and policymakers) (Thammasiri et al. 2014). Universities, for instance, often care about the
cost of attrition to their academicmission, reputation, and finances. False positive errors—instances
where the model misclassifies a student as returning for enrollment when in fact they will drop out
—matter differently than false negative errors—instances where the model erroneously predicts
drop out but the student, in fact, returns. Supporting the aims and values of decision makers
requires the use of other, more sophisticated evaluation metrics that offer insights into error
distributions (e.g., precision, recall, F-score).

Given an appropriate evaluation metric, developers can use a variety of interventions in the
process of algorithmic design to optimize model performance for that metric. Such interventions
might target the data preprocessing stage (e.g., using sampling methods that artificially balance
cases of attrition and nonattrition); the learning stage (e.g., introductions of differential costs
directly into learning); or the postprocessing stage (e.g., modification of decision thresholds) (Guo
et al. 2008). In general, optimizing for different metrics will produce different solutions, and the
choice to optimize a particular metric will reduce performance according to other metrics. By itself,
the formalism ofML cannot tell us which evaluationmetric (if any) is appropriate, or how exactly to
settle tradeoffs among competing desiderata. Rather, it can only inform us about the existence of
tradeoffs and potential ways of balancing them. Developers must make value choices about which
evaluation metrics are most ethically, socially, and politically defensible.

So far, we have refrained from discussing specific issues of justice and fairness in allocation. This
is intentional, as we seek to draw attention to the general form of value-sensitive appraisal that is
typical in the evaluation and design of predictive models. This general form is surprisingly
constrained: (i) the evaluations and interventions tend to focus narrowly on the predictive model
(and its immediate input and output); (ii) the main focus is on quantitative evaluation metrics that
depend only on the model and the statistical properties of the available data; and (iii) the resulting
assessments rely on the assumption that the data distribution is static (i.e., what we have seen in the
past is statistically representative of what wewill see in future deployment). In these ways, values are
explicitly considered in only a narrow slice of the design, development, and deployment process.

2.b The role of fairness metrics in fairness by design

While mainstream work in fair ML appears to address a categorically different set of concerns
(typically, equity among subpopulations of interest), it nevertheless adopts the same methodolog-
ical framework as more conventional ML work. Specifically, they restrict the universe of possible
objectives to statistics that can be estimated on the test set for a given dataset. Just as with
conventional supervised learning, the job of the fair ML practitioner is to decide which metric to
designate as the evaluative standard and what methods to apply to optimize that metric. Of course,
the fair ML practitioner focuses on different metrics that are sensitive to disparities across sub-
populations, but the basic methodology remains the same.

Consider, for example, the much-publicized discussion of bias in risk assessment models that
inform judges in making bail and sentencing decisions across many counties and states (Stevenson
and Doleac 2019). These models are designed to predict the risk of recidivism—operationalized as
likelihood of rearrest within a fixed period after release—based on defendants’ features such as age,
sex, and number and severity of prior offenses. Although the set of features often excludes race,
Angwin et al. (2016) demonstrated that somewidely used risk assessmentmodels exhibit significant
disparities in the distribution of predictive errors across different racial groups. Specifically, among
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the set of defendants that were in fact not rearrested upon release, black defendants were found to be
almost twice as likely as white defendants to be misclassified as “high risk.” Alternately, in cases
where defendants were, in fact, rearrested, white defendants were found to be almost twice as likely
to be misclassified as “low risk.” Importantly, such disparities will not be detected if models are
evaluated exclusively via aggregatemetrics that do not quantify disparities across groups. The use of
different, more sophisticated evaluation metrics can help in these cases.

The initial wave of research in fair ML thus focused primarily on these novel fairness metrics—
additional formal evaluation criteria intended to capture the extent to which a given model satisfies
certain desiderata concerning justice, fairness, and antidiscrimination (e.g., Zafar et al. 2017; Hardt,
Price, and Srebro 2016; Grgić-Hlača et al. 2018). In the dominant statistical approach, these metrics
are functions of the distribution of predictions (conditional on observed features) across different
groups. In practice, these metrics are typically expressed in terms of disparities in either the
difference or the ratio of some quantity (e.g., the fraction predicted positive, predictive accuracy,
false positive rate, false negative rate) assessed separately on two subpopulations.

Even if we detect a groupwise disparity asmeasured by some fairnessmetric, the proper response
is far from straightforward. Disparities detected at the modeling stage are often too coarse to tell us
definitively whether we actually have an ethical problem or what its source(s) might be. To be clear,
disparity measures can be useful. For example, a detected disparity may prompt us to investigate its
causes, but that investigation must proceed in the real world and not merely at the level of datasets,
models, and statisticalmetrics. Problems can arise because of actual bias in the world, or from one of
the many choices made prior to model development (e.g., how we collect data or operationalize key
concepts), or through many other pathways (Danks and London 2017).

Crucially, fairness metrics often play a further practical role beyond this (imperfect) diagnostic
function. In particular, they serve as target states for corrective interventions that seek to align
model performance with the metric. Similar to techniques for optimizing model performance with
respect to traditional evaluationmetrics, these “fairness-enhancing” interventions can take a variety
of forms, including methods that alter data preprocessing procedures (e.g., Kamiran and Calders
2012), learning objectives (e.g., Zafar et al. 2017), or decision thresholds (e.g., Hardt, Price, and
Srebro 2016). The core idea behind all these interventions, however, is to produce a newmodel that
maximizes predictive accuracy subject to the satisfaction of some chosen fairness metric.5 In
practice, the variety of targets and modes of intervention means that there are various trajectories
to achieving the target state encoded in a metric on a given dataset. That is, there is often a
multiplicity of “fair”models (according to somemetric) that while indistinguishable with respect to
that metric might differ substantially in other respects (Chouldechova and G’Sell 2017).6

This type of fairML faces a number of challenges, however.Many situations have been identified
in which decisions that optimize proposed fairness metrics violate common notions of justice and
fairness (Dwork et al. 2012; Lipton, Chouldechova, andMcAuley 2018; Fazelpour and Lipton 2020).
Moreover, we cannot (in general) simultaneously eliminate all disparities as quantified by these
metrics. As the much-publicized impossibility results demonstrate, tradeoffs among many metrics

5The role of these techniques for improving fairnessmeasures appears to be underappreciated by philosophers. For example,
Glymour andHerington (2019) claim that it is structurally impossible in certain cases to satisfymeasures that require groupwise
parity in error rates, regardless of the quality of our measurements. However, their method (using causal graphical models)
requires coherence assumptions that are violated by almost all the aforementioned techniques for satisfying fairness metrics. As
a result, the general claim by Glymour and Herington is mistaken, although their more specific claim—if we do not introduce
statistical biases that violate these assumptions, then no amount of better measurements suffices to resolve the detected
disparities—is correct.

6For example, two models might both satisfy equal distribution of error rates across two protected groups and exhibit the
same overall accuracy, but nonetheless differ in terms of particular cases where these errors occur. This multiplicity of “fair”
models might be seen as a particular case of general “predictive multiplicity” in algorithmic design with respect to evaluation
metrics (Marx, Calmon, and Ustun 2020).
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are inevitable, with perfect parity simultaneously achievable only in highly contrived circumstances
(Chouldechova 2016; Barocas and Selbst 2016; Kleinberg,Mullainathan, and Raghavan 2016). Even
if we determine which fairness metrics (if any) actually align with societal desiderata, significant
work remains. In particular, the fair ML practitioner typically must balance the utility of the model
(assessed by some conventional metric of performance) against potential fairness disparities. Most
mainstream technical work on fair ML thus puts aside normative considerations in favor of the
constrained optimization problems that arise from various choices of utility and fairness metrics.

In light of disagreements about the appropriate fairnessmetric(s), one line of philosophical work
has aimed tomake explicit the normative underpinnings of the ideal target states (i.e., the optima of
the fairness metrics) (Leben 2020; Hellman 2019; Glymour and Herington 2019; Binns 2018). This
work draws upon theories of distributive justice, as well as legal views on antidiscrimination, to
clarify the normative principles favoring various target states and, thereby, provide a reasoned basis
for resolving the disagreements sparked by impossibility results. If one could perhaps establish a
desired target for “fairness,” then that could guide choices about which fairness metric to adopt in
particular cases.

Nevertheless, these more sophisticated analyses all proceed within the basic framing of fair ML
methodology, focusing on the statistical properties of the predictive model as assessed on a given
historical dataset. Ultimately, however, the primary concern in devising fairness-enhancing strat-
egies is not about these past cases, but instead to assess the impact of allocations on individuals and
groups who will be affected by the deployment (at scale) of these models in the future. As discussed
above, given the current framing of work inML (in general) and fairML (in particular), assessments
on historical cases transfer to these future cases only if the relevant population characteristics are
assumed to remain static. As we will argue in the next section, however, the very introduction of
predictive models into complex social systems can set in motion dynamics that alter these
characteristics in critical ways, thus decoupling fairness-enhancing interventions (devised in a
static setting) from their intended targets in the real world.

3. The challenge of dynamics
Two core shortcomings of the standard approach are that its analyses are static and local. They are
static in the sense that they focus myopically on whatever snapshot of historical data constitutes the
available dataset. Any analysis that relies exclusively on such data necessarily ignores both the
mechanisms by which the data came to be, and those by which decisions feed back into the
environment, setting incentives that influence the behavior of those subject to decisions, and thus
altering the future distribution of data. The analyses tend to be local in that they focusmyopically on
a single decision-maker (agent, organization, or institution), assuming that the conclusions
deduced from their data alone will provide sufficient guidance about what actions should be taken
in social contexts involving multiple, interacting decision-making agents.

Several recent technical papers have demonstrated how this static and local focus can produce
mistaken diagnoses and specious guidance concerning justice-seeking interventions. Even in simple
models, conclusions can break down or even reverse after accounting for interdependencies among
the relevant social actors and institutions (Milli et al. 2019; D’Amour et al. 2020). Interventions that
proceed through a static and local lens can lead to societal harm in the long run, even as assessed by
the very same target ideal and metrics that they were intended to optimize (Liu et al. 2018; Heidari,
Nanda, and Gummadi 2019b).

Consider Liu et al. (2018), who examine a hypothetical lending scenario that takes into account
not only a (static) dataset of applicants (consisting of their attributes, the lending decisions, and the
eventual observed defaults), but also a model of the process by which today’s lending decisions and
the associated defaults might influence long-term credit scores, impacting future access to credit.
They find that considering just one step in a relatively straightforward model, short-term satisfac-
tion of fairness criteria from a static perspective can (depending on the model parameters) lead to
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either improvement, stagnation, or decline for the group that the practitioner intends to protect.
While the goal is to widen access to credit, whether the intervention achieves this benefit or harms
the protected group depends precariously on knowledge of how the environment evolves that
cannot be determined based on the static data alone (see also D’Amour et al. 2020).

In another study, Lipton, Chouldechova, andMcAuley (2018) examine a category of algorithms
that they dub Disparate Learning Processes (DLPs). These algorithms aim to simultaneously satisfy
two of fair ML’s ideal parity conditions: blindness and demographic parity. These two conditions
are often motivated via the US Civil Rights Act of 1964. Blindness requires that an ML model not
depend directly on the protected trait, while demographic parity requires that members of the
disadvantaged group receive favorable decisions at the same frequency as members of the advan-
taged group. Rather than allow the model itself to access the protected attribute as an input (which
would violate blindness), DLPs incorporate the protected feature into the training scheme (e.g., as a
constraint when choosing model parameters). While the resulting models may indeed satisfy these
two parity conditions, Lipton et al. demonstrate that DLPs can produce models that are clearly
problematic if one pauses to consider the social incentives set by the learned model.

In short, the only way for the model to satisfy demographic parity in a demographic-blind
fashion is to rely on proxies for the demographic information. Thus, seemingly irrelevant features
that happen to be correlated with gender might become important features for driving ostensibly
gender-blind admissions decisions. Because blindness is typically motivated via appeals to Dispa-
rate Treatment doctrine (in title VII of the US Civil Rights Act), which explicitly forbids intentional
discrimination on the basis of proxy variables, the resultingmodels satisfy the technical definition of
blindness while violating the legal principle that it was intended to formalize.

Particularly relevant in our case is the precise proxies relied upon. Using real computer science
admissions data, where the target variable reflects historical admissions decisions, and applying
DLPs, Lipton et al. find that the learned models rely heavily on proxies like subfield of study. In
subfields of study (e.g., human computer interaction) that already enjoy greater gender balance,
individuals are more likely (absent demographic info) to be women and, thus, are upweighted by
DLPs, while individuals applying to male-dominated fields (even if they are in fact women) are
more likely (absent demographic info) to bemen and, thus, disfavored byDLPs. Thus, in practice, it
is in precisely those subfields where women are least represented that they are hurt by the proposed
intervention. Moreover, the admissions score distorts the landscape of incentives, encouraging
individuals (both men and women) to misreport their preferred field of study. Importantly, if
individuals respond to this incentive, then the intervention would lose its power to achieve gender
parity.

Finally, the static lens can create the illusion of impossibilities (the aforementioned irrecon-
cilability of various parity conditions) by neglecting the fact that institutional interventions are
typically part of more complex sequences of choices that unfold over time. Crucially, in many
cases where it appears that fairness metrics cannot be reconciled instantly, they might none-
theless be satisfied simultaneously in the long run. For example, as Hu and Chen (2018)
demonstrate through a simple model of the labor market, a short-term intervention with a
demographic-aware policy may bring about long-term equilibria that can be sustained via
demographic-blind policies.

Social dynamics also pose a challenge to analyses adopting the standard fair ML strategy because
of the myopic focus of such analyses on a single decision-maker in ways that neglect the behavior of
other relevant agents in the environment. Examining issues of partial compliance within the context
of fair ML, Dai, Fazelpour, and Lipton (2020) employ simulation as a tool to model a hiring setting
in which candidates stream onto a job market involving multiple potential employers.7 In this

7In each turn, candidates apply to one among a set of employers and they exit themarket if they are hired. Candidates also exit
the market after a specified number of rounds if they are never hired.
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market, the distribution of scores characterizing the perceived skills of employees differs across
demographics.8 In this setting, Dai et al. (2020) explore the consequences of partial compliance by
varying the fraction of employers that comply with a version of demographic parity in their hiring
policies. While employers do not communicate directly, they interact via the dynamics of the job
market. An employee hired by one employer is not available to other employers in subsequent
rounds. These interactions aremore pronounced once onemodels the strategic behavior among the
applicants, wherein applicants can incorporate knowledge of their groupmembership as well as the
relevant job-market statistics to choose whether to apply to a compliant (versus a noncompliant)
employer.

Dai et al. (2020) find that when members of each group make strategic decisions about where to
apply based on the fraction of their demographic that were hired by each category of employer, then
at equilibrium, the compliant and noncompliant employers might appear to be performing equally
well vis-a-vis a naive local and static application of demographic parity, even when the compliant
employers are hiring far more candidates from the disadvantaged group.9 Moreover, when viewed
at the level of social hiring statistics, whether the fraction of fairness-conscious employers translates
into commensurate aggregate benefits depends precariously on a number of factors. In particular, a
version of demographic parity that appears effective in static analyses becomes highly fragile in
circumstances of partial compliance.10

Importantly, as Dai et al. (2020) note, versions of demographic parity that appear more robust to
dynamics of partial compliance are not without their own undesirable externalities. Specifically, the
differential incentives sort disadvantaged candidates into compliant employers and the advantaged
candidates to noncompliant ones, effectively segregating the workforce. Thus, tradeoffs can emerge
between the value of integration (with all the attendant benefits of diversity) (Anderson 2010) on
one hand, and progress towards demographic parity. Importantly, however, these considerations
cannot be accessed via the local lens adopted by the standard fair ML methodology.

Together, these works highlight the fact that we should consider the longer-term, situated impacts
of proposed policies on the social systems in which they are embedded. Doing so often requires
knowledge of contingent features of the world in order to assess whether some proposed intervention
achieves its intended aim (without thereby resulting in undesirable externalities). Two situations can
have the same statistics but exhibit radically different dynamics. Thus, any fair ML ideal (e.g., parity
metric) may assess these situations identically, even when opposite interventions are called for. Note
that these challenges due to social dynamics are not limited to allocationdecisions that incorporateML
tools. Fazelpour and Lipton (2020), for example, suggest that these complications are encountered by
certain modes of ideal theorizing about justice—which they argue is instantiated in fair ML
approaches—that take as their starting point the specification of ideal target states in abstraction
from contextual factors of deployment. Moreover, as we will see in next section, the prevalence of
complications due to dynamics is widely appreciated in many local allocation settings.

4. Taking dynamics seriously: Procedures as objects of moral appraisal
Any effort to incorporate dynamics into our ethical and policy reasoning must acknowledge the
difficulty of that task. For example, Elster (1992) describes the many ways in which the dynamics of

8Dai, Fazelpour, and Liptons’ (2020) analysis and conclusions do not depend on whether the disparities are due to historical
discrimination or bias in the assessment itself.

9This is due to Simpson’s paradox type of issue that arises for local and static evaluations that ignore confounding causes of
how the observed data can change as a result of an agent’s actions (see also D’Amour et al. 2020).

10That is, the social benefits (in terms of the aggregate proportion of disadvantaged group hired across employers) of
adopting this version of demographic parity quickly drops as the number of noncompliant employers increases, such that k
percent compliance across employers does not bring about k percent of social benefits that one might observe under full
compliance.
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deployment—via partial compliance, incentive effects,…—can impair our ability to anticipate the
consequences of adopting different allocation schemes in settings such as admissions, military
drafts, and layoffs. According to Elster, the challenge of “anticipating and identifying such
[dynamic] effects suggest that it is … naive to believe that allocative schemes could be fine-tuned
so as to take full account of them” (166). In fact, Elster (2013) goes further, arguing that the complex
dynamics of deployment will introduce a novel type of indeterminacy: even if we agree on what
constitutes a desirable outcome,11 we lack the means for verifying whether (or how often) policies
designed in advance will bring about that outcome in practice. This type of indeterminacy is not
only due to the practical impossibility of anticipating and proactively responding to all potential
environmental interactions, but also because of (potentially value-laden) disagreements and
limitations that impact our other epistemic capabilities. For example, we are often uncertain about
the appropriate causal model of the environment, but such models are required to estimate the
likely consequences of a given policy.12 Similarly, we often face knowledge gaps that limit our ability
to evaluate the quality of various decisions.

Elster’s concerns translate directly to the case of ML-based decision-making. The previous
section surveyed works that showed how evenminimal considerations of environmental dynamics
can complicate fairness appraisals carried out in static settings.While these minimal considerations
suffice for highlighting that the situated dynamics of interventions should be incorporated inmoral
appraisal, they are insufficient for suggesting how this might be done. That is, the findings do not
translate into robust guidelines for proactively fine-tuning predictive models to mitigate potential
complications, precisely because these works do not contend with the further challenges of
disagreement over appropriate statistical and causal analyses of the environment (Chouldechova
and Roth 2020).13

Epistemic limits to observational capacities provide further reason to question efforts that focus
our ethical and policy evaluations on outcomes. How can we assess the quality of decisions or the
predictions that guided them when many of the relevant outcomes are observed only after a long
delay (or never at all)? For example, it may be decades before we learn whether a borrower defaults
prior to full repayment. Moreover, for those applicants denied a loan altogether, we never have the
opportunity to observe whether they would have defaulted in the counterfactual scenario. While
lenders apply a variety of heuristics to handle this problem (which they call reject inference), some
require strong, unverifiable assumptions and others proceed from no discernible principle at all.14

Although these concerns are particularly salient in fair ML, Elster (2013) has a much more
general target. He argues that outcome-based views—i.e., those that seek to justify the adoption of a
policy by reference to the “goodness” (in some sense) of its consequences—are simply untenable
when we are working in the real world. As an alternative, Elster offers an “impure procedural”
normative framework that takes decision procedures as the core object of moral evaluation and
intervention. That is, particular policies and mechanisms are justified by the “goodness” of the
decision-making procedure (rather than its consequences or outcomes). Elster defines the goodness

11In fair ML context, even if there were no disagreements about the choice of fairness metric.
12As Elster notes, this uncertainty about causal structure can open the door to post hoc justifications for any policy. In

particular, “[t]o justify a policy to which one is attached on self-interested or ideological grounds, one can shop around for a
causal or statistical model just as one can shop around for a principle. Once it has been found, one can reverse the sequence and
present the policy as the conclusion” (2013, 5).

13As Chouldechova and Roth note, “the specific predictions of most models of this sort [that seek to incorporate aspects of
dynamics] are brittle to the specific modeling assumptions made—they point to the need to consider long term dynamics, but
do not provide robust guidance for how to navigate them” (2020, 86). Part of the issue is that most works focus on dynamics but
retain a strongly outcome-based perspective.

14The algorithmic decision itself might be a cause of the prediction subject’s later response, so we must make assumptions
about those impacts. A real-world instance is the potential criminogenic impact of incarcerations, which significantly
complicates efforts to assess accuracy about criminal sentencing and parole algorithms. For other examples of related “selective
labels” problems, see Lakkaraju et al. (2017); Corbett-Davies and Goel (2018).
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of a procedure negatively: a procedure is better to the extent that it eliminates or mitigates
known obstacles to good decision-making (e.g., systematic cognitive and motivational biases,
prejudices,…). It is an impure procedural view in that, even after having done our best to remove
such obstacles, the results might not necessarily constitute desirable outcomes and, so, might need
to be overturned. Overall, though, our epistemic humility (in light of the challenges raised by
dynamics) requires that we morally appraise only the procedure and then simply “let the chips fall
where they may” (12).

There is much to commend about Elster’s proposal. In particular, his recognition of the
insufficiency of outcome-based justifications as well as their vulnerability to interactive dynamic
effects, fragile (and potentially motivated) causal analyses, and strong epistemic limits all provide
strong reasons to focus on institutional decision-making processes. This focus on various stages of
the decision process stands in stark contrast with the debates surrounding the choice of (fairness or
evaluation) metrics for ML-based decisions, which often abstract away from other value judgments
that are embedded throughout the process of design and development. As noted by some authors
(Selbst et al. 2019; Fazelpour and Lipton 2020), the standard approach in fair ML has resulted in a
perilous solutionism that obscures objectionable choices made throughout the process by con-
straining the scope of normative reasoning to debates about fairness metrics.

Nonetheless, there are reasons to worry that Elster’s impure procedural framework simulta-
neously goes too far and not far enough. On the one hand, as noted by Elster himself, sometimes
even our best efforts toward securing the quality of decision-making procedures are not good
enough. Appropriate overruling mechanisms should thus be in place to safeguard against this
possibility. Yet, decisions to invoke these overruling mechanisms require the anticipation and
evaluation of outcomes. The impure procedural framework arguably goes too far in its focus on
procedures to the exclusion of outcomes and dynamics.15 On the other hand, it is unclear whether
Elster’s procedural approach truly dispenses with outcome-based considerations or only changes
the ways that they are incorporated. Consider the suggestion that systematic biases resulting from
cognitive strategies such as availability and representativeness heuristics are in some sense prob-
lematic, and so should be nullified by a “good procedure.” Implicit in this claim is the idea that these
heuristics are supposed to approximate some standard (e.g., the standards of rational choice theory)
from which they systematically diverge in certain scenarios. Characterizing such divergences as
problematic is, therefore, not agnostic with respect to the conceptions of good decision outcomes.16

That is, the impure procedural framework is still in a sense outcome-centric.

5. Taking dynamics seriously: Trajectories as objects of moral appraisal
While outcome-based attempts to absorb the consequences of dynamics into static target states is
epistemically untenable, the sole focus on the procedures is also insufficient.17 Instead, we propose
to take dynamic trajectories as objects of moral appraisal in themselves, and not merely as
agglomerations of static states or contingent products of a procedure. That is, we contend that
the moral evaluation of a trajectory cannot be simply the sum of moral evaluations at each moment
in time, nor the moral evaluation of the procedure that generated it. Rather, the moral evaluation of
a trajectory depends (partly) on good-making properties of the trajectory as a whole. We thus turn
now to three important ways in which full trajectories are subject to moral appraisal.

15Thankfully, the knowledge required here can be more coarse-grained than the type of information needed for proactively
fine-tuning the policy to account for such possibilities. One can agree with Elster that we ought not be completely outcome-
centric while disagreeing that we ought to be completely procedure-centric.

16Gerlsbeck (2014) raises this type of concern about Elster’s approach.
17Of course, the choice to focus on procedures or outcomes need not be dichotomous (Meshelski 2016). In what follows,

however, we consider trajectories as an additional object of moral appraisal.
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5.a Temporal dynamics of trajectories

Justice-promoting interventions are often evaluated in a relatively static way: the action occurs at
some time and then the outcome results at some indeterminate future time. When we consider
trajectories as a whole, however, we see that such interventions are typically part of more complex
sequences of choices. Actions are rarely irrevocable or unchangeable but can, instead, be adapted as
we learn more about the relevant social systems, or as those systems change over time. Any
particular choice (given a state at a particular moment) must be understood in relation to the
many other choices and states in the trajectory. For example, our moral evaluations of a trajectory
should acknowledge injustices along the path towards the ideal state, not simply assume that they
are permissible transient costs (Valentini 2012). Moreover, social systems rarely reach an end state
but rather continue to evolve over time, and so the language of “reaching the ideal target state”
presupposes a false finality.

When we broaden our perspective to consider trajectories as objects of moral consideration in
themselves, we immediately recognize that considerations of speed, efficiency, and related tradeoffs
all become relevant for ethical evaluations. For example, a sequence of actions A1,…,An might
quickly lead to a good but not-quite-ideal state, while actions B1,…,Bm slowly reach an almost-ideal
steady-state. If we prioritize the short-run, then the A-sequence is presumably preferable; in the
(sufficiently) long-run, the B-sequence is better. Moral evaluation of a trajectory thus depends on
the relevant timescales, and the tradeoffs between success on different timescales. In particular, we
must consider whether the short-run harms incurred under the B-sequence (relative to the A-
sequence) are ethically defensible in light of the longer-term benefits. We do not advance a context-
general solution here since any resolution of these tradeoffs will need to engage with issues of
interpersonal comparison and moral entitlements: How do we weigh harms to individuals now
versus those done to future individuals, and what can each generation claim as a legitimate moral
entitlement?

Of course, one might address these questions without considering the trajectory as a distinct
object of moral evaluation (and many ethicists and political philosophers have). One might, for
example, hope to simply “integrate” the ethical benefits and harms at each time point to obtain an
overall evaluation of a trajectory. Such an “integration” over a trajectory is far from straightforward,
however, since they are not necessarily fixed objects; we typically have the ability to adapt our
interventions over time, or repeatedly intervene in different ways. Indeed, our evaluation of
trajectories invariably involves key ethical-epistemic tradeoffs. Given our status as epistemically
limited agents, wemight have to incur some ethical “cost” in the short-run to gain epistemic insights
that enable us to do better ethically in the long-run, as raised in Mill’s “experiments in living”
(Anderson 1991; Mill 1892; Muldoon 2016). This tradeoff is also familiar in the context of
biomedical research: we run clinical trials in the short-run even though we know that some people
may be harmed (e.g., by failure to adopt a beneficial treatment or by the trial itself), since the
epistemic reward enables us to act more ethically in the long-run. This type of ethical-epistemic
tradeoff is ubiquitous, and not a special property of clinical trials (see Gaus 2016;Morton 2012).We
almost never have all the relevant background knowledge to assess the options in front of us, and so
we must consider whether to take some short-run actions to reduce uncertainty (including
additional information search) even though that additional time might contribute to, or allow
the continued existence of, moral injustices. The ethical value of a trajectory is notmerely the sumof
the ethical value at each moment in time, but rather must incorporate epistemic value that enables
future ethical value. Hence, there is no single timescale or time frame over which we can integrate
the momentary ethical values, at least not without specifying these complex ethical-epistemic
tradeoffs.

We have deliberately refrained from using examples from fair ML in this section, as our
conclusions are broader than that context. We contend that the scope of moral evaluation writ
large must include the trajectories themselves, including the necessarily dynamic nature and
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tradeoffs of justice-promoting actions in social systems. Nonetheless, the issues raised here clearly
apply directly to evaluations, interventions, and policies within fair ML. We should not simply ask
whether some alternative algorithm would, in this particular moment, lead to “fairer” judgments.
Rather, we must consider whether, for example, our knowledge of the relevant social systems could
be improved (by well-designed interventions) in ways that could lead to fairer judgments at future
times.18

5.b Robustness of trajectories

The previous subsection highlighted the need for navigating complex value tradeoffs when
considering possible sequential interventions. Of course, the world gets a say in what happens
after our interventions.Moral appraisal of full trajectories is also required because of the complexity
of the social and physical systems within which our actions occur. These systems consist of highly
interdependent networks of agents, institutions, and norms, all capable of functioning as distinct
causal actors. As a result, we will rarely be in a position to predict or anticipate exactly how a local
corrective intervention will unfold in the actual world. Assessments of its likelihood of success, as
well as the distinctive ways in which it might fail, must incorporate details of this broader system.

Many areas of (applied) ethics and political philosophy aim to address this complexity by
determining the probabilities of each possible outcome, and then assessing the moral value of an
intervention in terms of this probability distribution, rather than only the value of the intended
state. However, calculation of such probability distributions requires knowledge of the actual
structure of our interventions, the relevant causal structure of the broad social system, and the
likelihoods of various possible perturbations of that system. While such knowledge might be
possible in very limited circumstances, these assumptions are more appropriate for toy examples
rather than real-world efforts. Indeed, as we saw in section 4, Elster (1992; 2013) took this
complexity as reason to focus on the decision procedure.

We suggest a different response: the moral appraisal of a trajectory should depend in part on the
robustness of various intervention strategies for reaching (or nearing) desired states. Philosophers of
science have examined the importance of robustness for purposes of prediction, understanding, and
control (Weisberg 2012; Woodward 2006). In general, an action is a robust cause of some outcome
when the outcome is produced in a wide range of background conditions. For example, a hammer
strike is a robust cause of a glass shattering, while a fingernail tap in just the right place is not. The
former cause will succeed even if the strike occurs in a different place or the crystalline structure of
the glass is slightly different, while the latter is highly dependent on the exact environmental
conditions. The idea of robustness also applies to policies or sequences of actions, as some will be
more effective at bringing about or maintaining some desirable outcomes. In everyday life, we
typically prefer robust causes on pragmatic grounds, since they enable us to achieve our goals
without requiring substantial knowledge or control over our environment.We propose here that we
should also prefer robust causes on ethical grounds.

Robustness evaluation requires that we consider not only the (sequence of) actions, but also (our
uncertainty about) the structure and stability of the world. In particular, our moral appraisals must
include the social and environmental perturbations that are epistemically foreseeable or reasonable,
as those determine the conditions under which some justice-promoting intervention or policy
should be robust. For example, evaluation of efforts within fair ML to change hiring practices to
reduce systemic discrimination might reasonably expect only partial compliance, but not zero
compliance. There is obviously no “bright line” that demarcates the reasonable from the unrea-
sonable in this step. Rather, the exact set of potential perturbations will depend on the evaluator’s

18This consideration is particularly important for fairness measures that require causal knowledge, as we frequently are
uncertain about important parts of the relevant causal structures.
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knowledge (e.g., what they should reasonably know about the other actors in the system) and their
pragmatic abilities (e.g., the aspects of the environment they could control).

In many situations, moral evaluation of a trajectory will require a tradeoff between robustness
and perfection. For example, a trajectory τ1 might involve interventions that robustly lead to not-
quite-ideal states, while trajectory τ2 results in an ideal state but is generated by nonrobust
interventions (i.e., most “nearby” alternative trajectories are badly suboptimal). These types of
tradeoffs are widespread in everyday pragmatic decision-making. In the context of ethics and
political philosophy, the usual framing in terms of decision-making under risk or uncertainty fails
to capture the complexity of robustness evaluations.

We close this section by highlighting a complication that we previously elided: Should the set of
reasonable perturbations include predictable-but-morally-objectionable actions by others? That is,
should the moral evaluation incorporate expectations that other agents will act in morally
objectionable ways?On the one hand, their actions are expected and so should arguably be included.
On the other hand, if I adjust my choice in light of their bad actions, then I potentially become
complicit in the perpetuation of injustice.19 As an example in fair ML, consider a hiring evaluation
algorithm presented with two applicants, where candidate C1 is significantly better qualified than
applicant C2. But suppose also that this is a customer-facing job in a highly racist society, and only
C1 is amember of an underrepresentedminority. How ought the algorithm evaluate the candidates?
It cannot simply ignore our customers’ racism, as that societal background condition will signif-
icantly impact not only C1’s ability to do the job, but also chances of turnover, performance
appraisals that influence C1’s later work opportunities, and even the data for future iterations of the
hiring algorithm. But if the algorithm ranksC2 higher because they are more likely to succeed at the
job, then we (via the algorithm) are thereby tacitly acquiescing to that racism, rather than
attempting to counteract it.

As this example shows, we cannot consider an algorithmic judgment in isolation, but rathermust
consider the relevant timescales, sequential nature of decisions, downstream impacts on various
systems, reasonably foreseeable societal changes, and much more. The challenge is not that the
proper fairness metric is unknown; metrics for single judgments are deeply insufficient for this
challenge. Every one of these elements is dynamic in nature and cannot be reduced to (a precise
probability distribution over) a sequence of states. Instead, our moral appraisals must apply to
(collections of) trajectories, including clarity about, and specification of, a variety of resulting
tradeoffs.

5.c Diversity of perspectives on trajectories

The previous discussions of temporal dynamics and robustness demonstrate a strong depen-
dence of moral evaluations on prior modeling decisions. Which aspects of the social environ-
ment should we include into our deliberations, and how? These abstractions and idealizations
have both epistemic impact on the accuracy of our appraisals, and ethical impact on our value
assessments of different trajectories. Our moral appraisals of trajectories will depend partly on
what we choose to abstract or idealize. One might hope that these choices could be relatively
“value-free.” This hope seems to underpin the traditional division of labor between social
scientists and regulators (who are assumed to make value-free modeling decisions) versus
philosophers and policymakers (who provide value-laden appraisals, given a model). However,
these representational choices are themselves value-laden and, so, we cannot simply divide the
task into these two components. That is, these representational choices are yet another dimen-
sion for moral appraisal of trajectories.

19This connects to worries that allowing nonideal conditions to exert toomuch influence on our plans and policies can result
in excessive timidity in our justice-seeking efforts (Stemplowska and Swift 2012).
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As many philosophers of science have argued, the legitimacy of choices made in modeling
contexts (at least partially) depends on the intended aims of the model (e.g., Potochnik 2017;
Weisberg 2012). That is, our representational choices should be sensitive to the decision-
makers’ (assumed) ethical and epistemic goals and responsibilities. Hence, different aspects of
the social environment will be relevant for decision-makers depending on their aims (e.g.,
doing no further harm versus remedying upstream historical injustices). Ethical ambitions can
thus lead to representational choices with significant epistemic requirements, producing yet
another ethical-epistemic tradeoff. Suppose, for example, that a local (as opposed to central-
ized) organization wants its hiring to reduce biases by identifying and compensating for the
impact of upstream luck (e.g., family background, educational opportunities).20 On top of the
challenge of distinguishing between upstream luck and effort, the ethical ambition increases
the scope of representational choices and, so, the associated epistemic demands. In particular,
we must represent not only past-oriented elements needed for corrections, but also future-
oriented information required for coordination with other relevant decision-makers (Elster
1992). These epistemic demands might, in turn, influence decision-makers’ aims and ambi-
tions.

More generally, as discussed in section 4, assessments of dynamics of interventions depend on
potentially value-laden causal and statistical analyses. For example, value judgments influence
selection of the environmental features that are perceived to be causally relevant (Icard,
Kominsky, and Knobe 2017) as well as the relevant causal model itself (Statham 2020). And
when the value judgments occur early in the process, they can restrict our attention in ethically
and epistemically troubling ways. As a counter to this premature narrowing of possibilities, a
number of researchers have advocated for inclusion of a diversity of perspectives, whether
through participatory design and collaborative causal theory formation (Martin et al. 2020) or
in theorizing about justice and democracy in political philosophy (Muldoon 2016; Gaus 2016;
Anderson 2006).

If trajectories are objects of moral appraisal in themselves, then we have additional ways to
benefit from perspectival diversity. Specifically, if we maintain a diversity of perspectives
(including diverse potential aims) about the changing sociotechnical environment as well as
the desired target states, then we can better understand the potential robustness of our choices,
and even which choices are possible in the first place. Here, even simplified models of the
environment can yield qualitative insights that enrich our understanding of how our interven-
tions impact the broader social system. While these insights might not be fine-grained enough to
guarantee the achievement of a prespecified outcome, they nonetheless offer valuable additional
ways for monitoring the unfolding of justice-seeking trajectories in real time or at regular
intervals.

6. Conclusion
Recent critical work on the limitations of standard approaches in fair ML highlight the many
ways in which evaluation and justification of purported justice-seeking interventions cannot
proceed from a static and local lens. Such evaluations need to consider the situated dynamics of
such interventions and, in doing so, contend with the variety of tradeoffs that considerations of
dynamics bring into view. Clearly, moral and political thinking has much to contribute to these
issues. Doing so, however, first requires a recognition of how prominent philosophical analyses
of justice and fairness tend to neglect critical challenges that arise because of complex dynamics
and knowledge gaps. The tendency to relegate these inherently normative issues to the “applied
domain”—as tasks delegated to developers or social scientists after the completion of moral

20For recent luck-egalitarian ideas in fair ML, see Heidari et al. (2019a) and Binns (2018).
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appraisal—not only falsely restricts the domain of moral and political thinking; it might also
reinforce ethical blind spots of misguided technical solutions that can result in lasting harm in
practice.
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