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Abstract 
 

Research on human causal learning has largely focused 
on strength learning, or on computational-level theories; 
there are few formal algorithmic models of how people 
learn causal structure from covariations. We introduce a 
model that learns causal structure in a local manner via 
prediction-error learning. This local learning is then 
integrated dynamically into a unified representation of 
causal structure. The model uses computationally 
plausible approximations of (locally) rational learning, 
and so represents a hybrid between the associationist and 
rational paradigms in causal learning research. We 
conclude by showing that the model provides a good fit 
to data from a previous experiment.   

Keywords: Causal learning; causal Bayes nets; 
prediction-error learning; algorithmic level 

Introduction 
From a young age, we spontaneously, and often effortlessly, 
come to understand the causal structure of the world, and 
then use that knowledge to both predict what might happen 
in the future and also design actions that will achieve our 
goals (e.g., Gopnik, et al., 2004; Sloman, 2005). Our focus 
here is causal learning from covariational data: how do 
people learn the causal structure of the world from a 
sequence of observations or interventions of that world? 

Causal learning can usefully be separated into the related-
but-distinct problems of representation and dynamics—what 
is learned and how is it learned. In this paper, we develop a 
novel account of causal learning that, at a high level, uses 
quasi-associationist processes to learn directed graph-like 
causal representations. It is thus a hybrid of the standard 
rationalist vs. associationist approaches to causal learning.  

Representations of Causal Structure 
The development of causal Bayesian networks prompted a 
major advance in our understanding of causal knowledge. A 
causal Bayes net has two components: (i) a directed acyclic 
graph (DAG) whose nodes represent variables and directed 
edges represent direct causal relations (see Figure 1); and 
(ii) a probability distribution that encodes how causes 
influence their effects. These two elements represent 
qualitative and quantitative causal structure, respectively, 

and are connected by a pair of assumptions (Markov and 
Faithfulness) that capture the ways in which causal structure 
manifests in observed data. Sloman (2005) and Spirtes, 
Glymour, & Scheines (1993) provide useful expositions of 
the causal Bayes net framework. 
 

 
 

Figure 1: Prototypical 3-variable causal Bayes nets 
 

There is substantial evidence that the type of structural 
knowledge captured by a causal Bayes net—or at least, the 
directed graphical model part—is necessary to account for 
many causal reasoning abilities. One hallmark of causal 
reasoning, rather than correlational, is that cases involving 
observations vs. interventions are treated differently 
(Sloman & Lagnado, 2005; Waldmann & Hagmayer, 2005). 
For example, one can infer, from an observation of a 
professor’s gray hair, that she likely has many publications. 
No such inference follows if she instead intervened to dye 
her hair gray. Causal Bayes nets can straightforwardly 
account for this difference, as interventions are represented 
by ‘graph surgery,’ where a variable that is intervened upon 
is separated from its typical causes (Spirtes, et al., 1993). 
This surgery changes the informational relations, and so 
one’s inferences can be different in the two situations.  

Some aspects of causal knowledge are not easily 
represented by this formalism (e.g. the spatiotemporal 
relations between causes and effects), but it seems to 
provide a good account of people’s representations of causal 
structure. Thus, we aim to develop a theory of causal 
learning in which people learn a directed graph (perhaps 
acyclic, though we will allow for cyclic structures). 

Dynamics of Causal Structure Learning 
Theories about how people use covariation to learn directed 
graph representations can be divided roughly into rational 
and heuristic accounts of causal learning. Rational accounts 



model causal learning as rational inference. These include 
constraint-based algorithms (e.g., Glymour, 2003; Gopnik, 
et al., 2004), and those based on Bayesian inference (e.g., 
Steyvers, et al., 2003; Griffiths & Tenenbaum, 2005). They 
are usually intended at the computational level of analysis, 
as they show how the cognitive system’s performance 
solves the problem faced by that system, but do not attempt 
to characterize the underlying cognitive processes. There 
have been some recent attempts to develop algorithmic (i.e. 
process) models of causal learning based on approximations 
of Bayesian inference (e.g., Bonawitz, et al., 2011). These 
models have so far only addressed causal strength learning, 
and it is not clear how to extend them (in a computationally 
tractable manner) to structure learning. 

Heuristic accounts of causal learning propose that people 
use various cues to suggest and modify causal hypotheses in 
a not-necessarily-rational (though presumably sensible) 
manner. Causal model theory (Waldmann, 1996) proposes 
that learners use cues such as covariation, temporal order, 
and spatial proximity to select an initial causal structure and 
adjust it in the face of inconsistent data (Lagnado, 
Waldmann, Hagmayer, & Sloman, 2007). Causal model 
theory has never been entirely formally specified, though 
some parts have received formal treatment.  

The local computations model (Fernbach & Sloman, 
2009) attempts to explain how learners use data from 
interventions to learn a causal structure. The key idea is that, 
when a variable is intervened upon and other variables 
change, the learner infers that the intervened-upon variable 
caused those other variables. Critically, all learning in this 
model is local, as people evaluate individual causal relations 
rather than entire graphs. The model we present here adopts 
this important insight and extends it to all covariation-based 
structure learning, including learning from observations.  

The single-effect learning model (Waldmann, et al., 2008) 
also assumes that people focus on evaluating single causal 
relations. It is a model of learning from observations, and 
proposes that learners estimate the causal power (Cheng, 
1997) of each potential cause of an effect. If a variable has 
sufficient (estimated) causal power, then the learner accepts 
the causal relation and integrates it with her previous causal 
knowledge. This model has found some empirical support in 
both humans and rats (Waldmann, et al., 2008).  

Our model adopts the single-effect learning model’s focus 
on causal power, and the integration of these individually 
learned relations into a unified causal structure. However, 
the standard causal power theory is a computational theory 
that makes no commitment to underlying processes. Danks, 
Griffiths, & Tenenbaum (2003) provided a prediction-error-
based model of causal strength learning whose equilibrium 
states are causal powers, and so their model can be viewed 
as an algorithmic implementation of the causal power 
theory. Moreover, its basis in prediction-errors is consistent 
with neuroscientific evidence that the right lateral prefrontal 
cortex encodes prediction-error signals during causal 
learning (Corlett, et al., 2004; Turner, et al., 2004).   

Another lacuna in the single-effect learning model is that 
it does not explain how the learner uses a causal power 
estimate to determine whether a link actually exists. We 
thus provide a decision procedure for causal relation 
acceptance based on both the learner’s point estimate and 
her confidence in that estimate. This addition allows us to 
model the dynamics of learning for directed graphs that are 
more complex than the single-effect structure.  

The LPL Model 
The Local Prediction-error Learning (LPL) model aims to 
explain how observations and interventions are used to learn 
causal structure when one has relatively little prior 
knowledge. We do not model many other relevant sources 
of information, including verbal communication, reasoning, 
or spatiotemporal information. The model does assume that 
the learner knows the functional form of the causal relations 
and (when relevant) the expected temporal delay between 
causes and effects.  

The LPL model begins with an initial causal structure 
hypothesis: a directed graph representing the individual’s 
prior beliefs, where an edge indicates an a priori belief that 
there is a causal connection, and absence indicates only 
agnosticism.1 For typical experiments in which participants 
have little prior knowledge, this will be an empty graph. The 
model alters this causal structure hypothesis by adding or 
removing single edges, thereby reducing the structure 
learning problem to the simpler task of evaluating individual 
causal relations. Multiple experimental results suggest that 
learners focus primarily on single causal relations (e.g., 
Gopnik et al., 2004; Waldmann, et al., 2008), presumably 
because of the computational complexity of evaluating 
larger structures.  

Figure 2 shows a high-level overview of the LPL 
algorithm. The key pieces to be explained are the Causal 
Strength Estimates, and how the Decision Procedure 
changes the Causal Structure Hypothesis.  

 

 
 

Figure 2: A high-level description of the LPL model 

                                                
1 The model can also encode a priori belief of definite edge 

absence, though we omit this complication for reasons of space. 



Causal Strength Estimates 
The LPL model generates causal strength estimates for 

each possible cause-effect pair that is not ruled out a priori. 
That is, for each pair of variables (A, B), the learner 
estimates the causal strength of A→B and B→A unless she 
has prior knowledge about potential edge direction. We 
assume here that the correct functional form for causal 
relations is noisy-OR, and so causal strengths are causal 
powers (Cheng, 1997; Griffiths & Tenenbaum, 2005), 
though this can change based on background information.  

Like the single-effect learning model, we assume that the 
appropriate scope for learning causal strength includes the 
potential cause, the effect, and any other definite causes of 
that effect. For instance, consider Figure 3(a), where the 
learner believes that B causes E and is trying to determine 
whether C also causes E. Unlike the single-effect learning 
model, however, causal strength estimates for C are 
generated by a mechanism similar to particle filters in 
approximate Bayesian inference, though our “particles” 
move by associationist learning. 

The LPL model initially draws n particles for each 
possible causal relation from a prior strength distribution 
determined by the learner’s background knowledge. The 
learner’s current beliefs about whether C causes E are 
represented by these particles {VC

1,...,VC
n }. There is a 

corresponding set {VB
1,...,VB

n } of particles for B. The use of 
multiple particles enables the model to capture both strength 
estimates and confidence in those estimates. The mean 

particle value, , is the point estimate of C’s 

causal strength. The average squared deviation of the 

particles, DC =
1
n

VC
i −VC( )

2

i=1

n
∑ , is the learner’s (lack of) 

confidence: low values of  indicate high confidence. 
We define a layer i of particles for an effect E as the i-th 

particle from each known and potential cause of E. In Figure 
3(a), for example, layer i would be { }. A layer of 
particles is a specific hypothesis about the strengths of all 
known and potential causes of E. Each layer is updated 

independently after each data point by prediction-error 
learning. Such learning can be represented schematically as:  

VC
i,t+1 =VC

i,t +α (observed – expected) 
The learning rate (α) is a free parameter, and observed has 
the value 1 if the effect occurs and 0 if it does not. The value 
of expected is typically the expected value of the effect 
variable, calculated using the functional form for the cause-
effect relation. Many associationist learning models fit this 
schema, including the classic Rescorla-Wagner model and 
the causal power estimator of Danks, et al. (2003). 

The expected value is computed separately for each 
potential cause in a layer. The current structure hypothesis 
has an influence because expected is based on only definite, 
known causes and the particular target potential cause for 
that update; other variables are ignored. This restriction 
reduces the computational demands on the learner, and fits 
real-world contexts where the learner cannot simultaneously 
attend to all the potential causes in her environment. If the 
causes combine as causal powers, then the expected value of 
E (for layer i and potential cause C) is:  

expected = 1−VK
t−1( )K=present∏ 1− 1−VJ

t−1( )
J=present
∏

#

$
%%

&

'
((  

where J (K) is the set of E’s generative (preventive) causes.  
Figure 3(b) shows how initial causal strength estimates 

can change over time. Data were generated by Figure 3(a) 
with a noisy-OR functional form. At first, the particles are 
spread widely around zero, representing the learner’s 
uncertainty in her estimate. As the learner observes more 
data points, prediction-error learning brings the particles 
closer to the true parameter values. The layers of particles 
that are further from the true values will generally have 
greater errors and thus will shift more towards the true 
values during learning. As a result, the estimates in different 
layers converge,2 representing the learner’s increasing 
confidence. This process gives no account of structure 
learning, however, so we turn to that now. 

                                                
2 Though they only stabilize around equilibrium values. If the 

learning rate is based on the learner’s current (lack of) confidence, 
then true convergence is possible. 
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Figure 3: (a) Example local learning context (solid / dashed arrows indicate known / potential causal relations); (b) Causal 

strength estimates of B (blue) and C (red) using five particles per edge 
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Causal Structure Judgments 
The LPL model has a single, definite structure hypothesis at 
each point in time, which can then be modified by either 
adding or removing an edge. These modifications are based 
on a decision procedure applied to the causal strength 
estimates after each update.  

Since an edge with a causal strength of zero is equivalent 
to no edge, the decision procedure uses a t-test on each set 
of particles with the null hypothesis that the particles are 
drawn from a distribution with mean µ = 0. The outcome of 
this test depends on both the particles’ mean and deviation. 
A free parameter pcritical guides the decision procedure. If 
there is no edge in the graph and the t-test rejects the null 
hypothesis (i.e., the p-value p of the test statistic is less than 
pcritical), then an edge is added. If there is an edge present 
and the t-test does not reach significance (i.e., p > pcritical), 
then the edge is removed from the graph.  

If a C→E edge is added or removed, future calculations of 
expected change for other potential causes of E, as those 
involve only the known causes of E. Crucially, this form of 
causal structure learning satisfices: the learner accepts the 
most plausible structure as a working hypothesis rather than 
representing and evaluating all possible structure hypotheses 
(as in standard Bayesian models).  

Other Factors 
Temporal information and the data source can influence the 
interpretation of covariational data, and so are also 
incorporated into the LPL model.  

 
Interventions Given an observation about C and E, the LPL 
model updates the causal strength estimates for both C→E 
and E→C whenever the model does not yet know which 
direction the causal influence flows (if any). If C’s value is 
instead set by intervention, then one knows that C is severed 
from its normal causes. Thus, one should not update causal 
strength estimates for potential causes of C. Operationally, 
if given data about an intervention on C, the LPL model 
updates only the C→E particles, and not the E→C ones.  
 
Temporal Information Temporal delays between the cause 
and effect influence contingency learning, though mediated 
by the learner’s expectations (Buehner & May, 2003; 
Buehner & McGregor, 2006). The LPL model compares the 
observed temporal difference dE-C between a potential cause 
and the effect to the expected temporal difference dtyp. If the 
learner expects the delay to always be dtyp, then the causal 
strength estimates update only when that delay occurs. If the 
learner expects the timeframe of the causal mechanism to be 
noisy, then the model reduces the salience of C—captured 
in the learning rate α—as a potential cause of E in 
proportion to derr = dE-C – dtyp. We define a learning rate αʹ′ 

that decreases exponentially as derr increases:α ' =α e
−
derr
s , 

where s is a scaling parameter that determines how 
sharply αʹ′ drops off as derr increases.  

Evaluating the LPL Model 

Data 
We evaluate the LPL model using data from Lagnado & 
Sloman (2006). In this experiment, participants had to 
discover the causal connections between four computers by 
sending 100 text messages to computer A and observing 
whether those messages were sent on to other computers. 
The true causal system is shown in Figure 4, where the 
arrows represent noisy causal relations. Messages always 
reached computer A, and the probability of a message being 
transmitted from one computer to the next was 0.8. 
Messages never spontaneously occurred.3 Trial order was 
randomized both for participants and for modeling. 
 

 
 
Figure 4: Causal structure from Lagnado & Sloman (2006)  

 
The original experiment contrasted temporal and 

covariational information, so there were four conditions that 
varied the temporal order in which messages appeared. 
Condition 1 involved no timing information, but conditions 
2-4 did (with different delays4). 

LPL Model  
Participants had no prior knowledge of causal structure, so 
the initial model was the empty graph (i.e., agnosticism). 
Connections between the computers were clearly generative, 
so the model only considered causal strength estimates 
between 0 and 1. For each possible edge, five particles were 
drawn from a truncated Gaussian (µ = 0, σ2 = .2).  

The LPL Model has four other free parameters. The 
expected temporal delay dtyp, and the temporal scaling 
parameter s are not used with simultaneous occurrences (as 
in condition 1). We thus first determined the values for the 
learning rate α and the critical significance level pcritical by 
maximizing model fit (via a grid search) for condition 1 
only. Model fit was based on R2 values5 for the proportions, 
over all possible causal relations CR, of (a) 1000 model runs 
that yielded CR, and (b) experimental participants that 

                                                
3 The resulting case distribution (N = 100) was: 51 cases with 

ABCD; 13 AB¬CD; 13 ABC¬D; 3 AB¬C¬D; and 20 A¬B¬C¬D. 
4 The messages always appeared in the same order within 

conditions: A-B-D-C in Condition 2, A-D-C-B in Condition 3, and 
A-B-CD (C and D simultaneous) in Condition 4. 

5 R2 = 1 – (SSerr / SStot), where SSerr and SStot are the sum of 
squared differences between the participant endorsement 
frequencies and the model proportion or mean endorsement, 
respectively. 



endorsed CR. The optimal model fit (R2 = .47) was with 

€ 

α = 0.1 and pcritical = 7 × 10-5. 
These parameter values were used for all subsequent 

simulations. Model results for conditions 2-4 thus provide 
cross-validation for those parameter values. We set dtyp = 1, 
as the natural temporal delay between a computer sending a 
text message and one receiving it would be one time-step. 
We then searched and found that s = 7 optimized model fit 
across conditions 2-4 (R2 = .47).  

Bayesian Model 
We compare the LPL model to a standard Bayesian model 
of causal structure learning. The model used a uniform prior 
over all possible graphs (cyclic and acyclic) over the four 
variables. The posterior probability of a graph H given the j-
th datapoint is: 

€ 

P Hi d j( ) =
P d j Hi ,do(A)( )P Hi( )

P d j( )
 

If tV denotes the time of V, then the likelihood is given by: 

€ 

P d j Hi ,do(A)( ) = P b,c,d, tB , tC , tD Hi ,do(A)( )  

                

€ 

= P b,c,d Hi ,do(A)( )P tB , tC , tD b,c,d,Hi ,do(A)( )  
Participants were told the true parameterization, so we use 
that distribution to calculate 

€ 

P b,c,d Hi ,do(A)( ) . For 
temporal sequences, the Bayesian model also assumed that 

delay probabilities followed an exponential decay function: 

P dE−C( ) = 1
2s
e
−
derr
s

.6
 

This adjustment introduces a new free parameter, s, that 
was estimated by maximizing model fit across conditions 2-
4 (s = 2, R2 = .23). To determine Bayesian model 
predictions, we assumed that people probability match: the 
proportion of “Bayesian endorsements” for each causal 
relation CR was simply the posterior probability of CR.  

Results and Discussion 
Figure 5 shows the LPL and Bayesian model predictions, as 
well as the actual participant data. R2 values for the models 
for each condition are shown in Table 1.  
 

Table 1: R2 values for the models 
 

 LPL Model Bayesian Model 
Condition 1 .47 -.037 
Condition 2 .40 .81 
Condition 3 .46 -1.01 

Condition 4 .59 .36 
Overall .47 .23 

 
The LPL model explains roughly half the variance in 
participant responses across all conditions, whereas the 
Bayesian model fit varies widely. Moreover, the Bayesian 
model does much worse than the LPL model in Condition 1 

                                                
6 The probability of a temporal sequence is complicated for 

cyclic graphs, as one must consider multiple ways to generate a 
temporal sequence. Technical details are available upon request. 

7 If R2 < 0 then the mean predicts more variance than the model. 

 
Figure 5: Proportion of causal relation endorsements by the LPL model, Bayesian model, and experimental participants 

 



(i.e., with no temporal information), suggesting that the 
modification of the Bayesian model to allow for temporal 
delays does not explain the poor fit.  

At the same time, both models provide good qualitative 
fits to the data: the model-participant correlations are r = .74 
for the LPL model and r = .97 for the Bayesian model. 
However, only the LPL model predicts the appropriate 
variability in the participants’ responses. For instance, the 
data are sufficient in Condition 1 for a Bayesian learner to 
determine the true causal structure (except for D→B and 
C→B, about which it is indifferent), and so even probability 
matchers should exhibit relatively little variation. However, 
many experimental participants select causal relations that 
are not part of the true structure, and some omit relations 
that are. Participants do not seem to be fully rational 
learners, and the LPL model is able to explain the types of 
errors that occur.  

Conclusion 
The LPL model aims to provide a formal algorithmic model 
of the mechanisms underlying covariation-based causal 
structure learning. It provides a computationally well-
specified dynamical model that learns directed graphs, and 
so potentially captures the cognitive mechanisms underlying 
causal learning. Moreover, this model predicts some of the 
sub-optimal learning behaviour exhibited by participants. 
Open questions remain about, for example, the suitability of 
the t-test-based decision procedure. But the LPL model 
provides a model that bridges the gap between associationist 
and rational models of causal learning. 
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