
 1

Theory Unification and Graphical Models in Human Categorization 

 

David Danks 

Department of Philosophy, Carnegie Mellon University; and 

Institute for Human & Machine Cognition 

 

Contact information: 

Department of Philosophy 

135 Baker Hall 

Carnegie Mellon University 

Pittsburgh, PA  15213 

ddanks@cmu.edu 

(412) 268-8047 (phone) 

(412) 268-1440 (fax) 

 

Introduction 

Disparate, mutually incompatible theories of categorization are widespread in cognitive 

psychology. While there are various formal results connecting pairs of these theories, the 

primary research focus has been on particular empirical tests of people’s favorite theories. This 

chapter steps back from the question of which single theory (if any) is “right,” and focuses 

instead on understanding the intertheoretic relationships among these models. Specifically, I will 

use the framework of probabilistic graphical models—a set of closely related computational and 

mathematical model-types—to provide a common lingua franca for a significant subset of the 
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extant psychological theories of categorization. This unified theoretical framework thus enables 

us to better understand the systematic relationships between the theories. In particular, we can 

gain a clearer picture of the overlaps and differences in the models’ empirical predictions and 

underlying assumptions. Furthermore, expressing these psychological models in a common 

framework helps to identify several natural generalizations of currently proposed models, as well 

as currently underexplored alternative theories. 

This graphical framework for representing various alternative models of categorization 

has a further, less obvious, benefit. Recent categorization research suggests that at least some 

categories are defined or described by an underlying causal structure (Ahn, Marsh, Luhmann, & 

Lee, 2002; Hadjichristidis, Sloman, Stevenson, & Over, 2004; Rehder, 2003a, 2003b, this 

volume; Rehder & Burnett, in press; Rehder & Hastie, 2004). Lien & Cheng (2000) found that 

people preferentially attend to one category from a set of possible categories, possibly quite a 

large set, based on which category optimizes causal learning and inference. Categorization thus 

seems to rely (sometimes) on causal reasoning. At the same time, all causal learning theories 

currently available—whether associationist or computational, normative or descriptive—assume 

that people are trying to learn causal relationships among a fixed set of well-defined variables; in 

other words, all current theories of causal learning assume some fixed categorization of the 

world. We also know that causal learning and prediction can suffer significantly if we do not 

have the appropriate (in a still unclear sense) categories (e.g., Spirtes & Scheines, 2004).  

These results and observations all point toward a deep interdependence between (at least 

parts of) the cognitive abilities of causal learning, inference, and prediction on the one hand, and 

categorization and category generation/learning on the other hand. As a result, we should aim to 

find a common representational language for categorization and causation, so that clear questions 
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can be simultaneously asked about both. Given the growing evidence (much of it described 

elsewhere in this book) that Bayesian networks—one particular type of probabilistic graphical 

model—underlie parts of causal cognition, this chapter’s framing of categorization theories in 

terms of probabilistic graphical models provides an important early step towards understanding 

the relationships between causation and categorization. 

In the next section, I will introduce three different categorization theories, all of which 

have figured prominently in recent research. I then introduce two different types of probabilistic 

graphical models—Bayesian networks and Markov random fields—and describe how these 

categorization theories can be straightforwardly understood in terms of inference in particular 

instances of these model-types. These formal equivalencies have various implications, both 

theoretical and experimental. Some of the implications are clear and immediate, including simple 

explanations for various model-fitting results in the experimental literature. Other implications 

are more suggestive. In particular, the mathematical equivalencies described in earlier sections 

suggest several substantive categorization theories that are, to my knowledge, novel to the 

psychological community (though not within machine learning). In the final substantive section, 

I will focus on one particular model and (programmatically) describe how it could account for a 

range of intriguing phenomena in various domains. 

 

Three Similarity Functions 

The general problem of categorization is to classify an object as belonging to a particular 

group. This classification can then be used for many different purposes, including inference of 

unobserved properties of this individual based on common properties within the group. For 

example, when hiking, I frequently (and quickly!) classify poorly-seen animals in terms of their 
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species. To make this judgment, I must attend to particular features and properties in the world, 

some of which I consciously attend to, others which I do not. In addition, my classification will 

depend (in part) on the other possibilities I consider. The same critter that I classify as a “pika” in 

Colorado might be classified as a “squirrel” in Pennsylvania (since I know that there are no pikas 

in Pennsylvania). Once I have classified the animal, I then decide whether to be concerned about 

the animal or not based on what I know about that species (e.g., a mountain lion or a squirrel, 

respectively). This latter task is typically referred to as feature inference or property induction: 

determining the likelihood that some novel instance of this category will have a particular 

property. In this section, I describe three different psychological theories that aim to model the 

cognitive representations and algorithms underlying this process. 

Although there are some exceptions, most psychological models of categorization 

separate categorization into two stages. For a novel instance X and some set of possible 

categories, I first determine how representative X is of each potential category. These “similarity 

ratings” are then integrated in a second step to produce a behavioral response, such as my 

categorization of this critter as a “squirrel.” In experimental settings, the relevant possible 

categories for a particular novel instance are invariably dictated by the cover story; in the real-

world, the possible categories are selected on some poorly-understood bases, such as pragmatics 

or prior knowledge. Most psychological research has focused on the similarity rating function(s); 

relatively little empirical work has been done on the second stage integration of similarity ratings 

(though see Wills, Reimers, Stewart, Suret, & McLaren, 2000).  

More formally, suppose that we represent individuals in terms of n (binary or 

continuousi) features, denoted by F1, …, Fn. These features are presumably selected by some 

process outside of the categorization theory itself. Throughout this chapter, I will make the 
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standard assumption for categorization theories that these features are well-defined and well-

specified. Similarity ratings for a particular category are thus just functions on these n features. 

The standard second-stage integration rule for the similarity ratings is the Shepard-Luce rule 

(Shepard, 1957; Luce, 1963): if SC(X) denotes the similarity of X to category C and Q indexes 

over all of the potential categories, then P(Respond “C” | X) = SC(X) / ΣSQ(X). That is, the 

probability of classifying X as a C is given by X’s similarity to C, divided by the sum of X’s 

similarity to every possible category (including C). Bias parameters are occasionally used 

(Logan, 2004), as well as other rules with significant formal connections to the Shepard-Luce 

rule (Ashby & Maddox, 2003). 

In this section, I will focus on the similarity functions for standard versions of exemplar 

(e.g., Kruschke, 1992; Lamberts, 1998, 2000; Nosofsky, 1986; Nosofsky & Palmeri, 1997; Zaki, 

Nosofsky, Stanton, & Cohen, 2003; Logan, 2004 provides a good overview of recent work), 

prototype (e.g., Minda & Smith, 2001; Smith & Minda, 1998), and causal model (e.g., Rehder, 

2003a, 2003b) theories of categorization. Substantial empirical support has been found for all 

three types of model, depending on the particular category, cover story, and task. And while 

these three similarity functions do not exhaust the space of proposed theories, they underlie the 

most widely discussed theories. In particular, this analysis includes Nosofsky’s (1986) 

Generalized Context Model (GCM; described below), which is the almost universal standard 

against which new psychological theories are judged. Rule-based categorization theories 

(including Nosofsky, Palmeri, & McKinley’s, 1994 RULEX model) are indirectly covered by 

this section, since single-feature rules are equivalent to exemplar/prototype models in which we 

attend to only one feature. More direct analysis of rule-based models is rarely possible, since 

simulations are almost always required to generate predictions for any realistic situations. Note 
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that dynamic measures of categorization, including category learning dynamics and response 

time predictions, will not be considered here.ii  

The Generalized Context Model (GCM; Nosofsky, 1986) provides the basis exemplar 

similarity function for numerous other categorization theories (e.g., Erickson & Kruschke, 1998; 

Kruschke, 1992; Lamberts, 1998, 2000; Nosofsky & Palmeri, 1997). The core intuition behind 

the GCM is that the similarity or typicality of some novel instance X for category A is given by 

the average distance in the “category space” between X and some subset of previously observed 

category instances (the exemplars). In other words, I represent a category in terms of exemplars 

(previous instances known to be in the category). A new object is similar just to the extent that it 

is “close” to the previous observations. For example, my category of “bird” is defined by 

remembered previous instances of birds (e.g., a robin, an ostrich, and so on). My category of 

“squirrel” is defined by previously observed squirrels. And some new critter is classified as a 

bird rather than a squirrel just when its average distance to the bird exemplars is less than its 

average distance to the squirrel exemplars (and those are the only two possibilities considered).  

Mathematically, we define a GCM (i.e., exemplar-based) category A by a set of 

exemplars E1, …, Em, each of which is a full specification of values for the n relevant features. 

Let Y(i) denote Y’s value for the i-th feature. The similarity between novel instance X and a 

particular exemplar Ej is then given by ( ) ( ) ( )[ ]∏
=

−×−=
n

i
jij iEiXcEXSim

1

exp, α , where αi is a 

salience parameter for the i-th feature, and c is a global weighting parameter.iii That is, the 

similarity is the product of (the exponential of) the distances between X and Ej on each of the 

feature dimensions. Note that, if the features are all binary-valued, then the similarity is just the 

product of exp[-c × αi] for each feature Fi on which X and Ej differ. The overall similarity rating 

of novel instance X for category A in the GCM—that is, the output of the first stage of the 
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categorization model—is the weighted sum of similarities for all category exemplars: 

. The similarity ratings for each GCM-category (e.g., GCM(X, 

A), GCM(X, B), and so on) are then combined using the Shepard-Luce rule to generate 

behavioral responses. In addition, the set of exemplars (i.e., the category definition) can 

straightforwardly be used for inference about unobserved features of objects placed into the same 

category: e.g., “this is a squirrel, and most of my squirrel exemplars were not aggressive, 

therefore this squirrel probably won’t be aggressive.” 

( ) (∑
=

=
m

j
jj EXSimWAXGCM

1

,, )

Prototype-based theories offer a different picture of categorization from exemplar-based 

models. Instead of basing the category on a set of previously remembered instances, categories 

are defined by prototypes—single objects—that encode a summary or average of people’s 

experiences with the category; these prototypes need not correspond to any actual category 

instance (and almost never will). A novel instance’s similarity to the category then depends on its 

distance in “category space” to that single prototype. The prototypical bird, for example, is not 

any bird that has ever been observed, though various actual birds (e.g., robins) are closer to it 

than others (e.g., ostriches). Mathematically, the prototype model (e.g., Minda & Smith, 2001; 

Smith & Minda, 1998; see also versions in Johansen & Palmeri, 2002; Olsson, Wennerholm, & 

Lyxzèn, 2004) is almost always a GCM model with only one exemplar for the category, but 

where the exemplar might not have been observed.iv However, this standard, simple prototype 

model fails to do justice to the intuition behind prototype models. Information about inter-feature 

connections or correlations is an important part of any summary of a series of observations, and 

this information cannot be expressed in the description of a single instance. The standard 

prototype similarity function requires some augmentation to capture the underlying intuition. 



 8

A simple way to incorporate inter-feature correlations is with second-order features: 

features whose value is entirely determined by the values of two first-order features. (Second-

order features are only one way to capture correlations; a more powerful option is discussed 

later.) For example, it might be important that both F2 and F17 occur, perhaps because an 

observed correlation. In that case, we could define a second-order feature that “occurs” if and 

only if F2 and F17 both occur. Second-order features consisting of logical AND functions are 

quite common (e.g., Rehder, 2003a, 2003b), but are certainly not the only kind of second-order 

feature that could be introduced; Danks (under review) gives a general, mathematical definition 

of (plausible) second-order features. If we allow second-order features into a category prototype, 

then we have to adjust the first-order feature prototype similarity function (which was just the 

GCM similarity function). For simplicity, I will use d(i, j) to denote the distance between 

(instance) X and (prototype) E along the feature composed of Fi and Fj (if i = j, this is the 

appropriate first-order feature). Let αii be the salience of first-order feature Fi, and αij be the 

salience of the second-order feature composed of Fi and Fj. (αij = 0 implies no second-order 

feature for Fi and Fj.) Given this notation, the second-order prototype (SOP) category similarity 

function is: . That is, the similarity between some 

instance X and category A is the product of (the exponentials of) the distances between X and A 

for each feature, including second-order ones. Once X is categorized into a particular prototype-

based category, feature inference is based entirely on the summary statistics encoded in the 

prototype itself. If the value of “Flies” is 0.95 for the prototypical bird (i.e., 95% of birds 

summarized in the prototype could fly), then the probability that this bird flies is 0.95. 

( ) ([∏∏
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The third psychological theory of categorization is causal model theory (Rehder, 2003a, 

2003b, this volume). Causal model theory defines a category in terms of a particular causal 
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structure among the features, including possibly unobserved features (e.g., an animal’s 

“essence”). The underlying intuition about similarity is that a particular instance is more likely to 

be a member of category A just when its observed features respect the causal relationships 

among the various features. Thus, the similarity function for a category in causal model theory is 

the probability that a particular novel instance would be generated by that category’s causal 

structure (perhaps multiplied by some scaling factor). For example, a particular object is similar 

to “bird” when the combination of observed features would likely be produced by something 

with the causal structure underlying the category of “bird.” Obviously, the mathematical details 

of causal model theory depend heavily on the particular representation of causal structures. 

Current versions of the theory model these structures using causal Bayesian networks (or causal 

Bayes nets). Details about causal Bayes nets are provided in the next section. For now, the 

relevant feature of a causal Bayes net is that it can be used to determine the probability of any 

particular combination of feature values given some causal structure; the causal model theory 

(CMT) similarity function is directly proportional to that probability. That is, CMT(X, A) is 

proportional to P(X | M), where M is the causal Bayes net for the category. Given a particular 

categorization, the causal structure can straightforwardly be used for feature inference (Ahn, et 

al., 2002; Hadjichristidis, et al., 2004; Rehder & Burnett, in press; Rehder & Hastie, 2004). 

In this section, I have left out several different types of categorization theories; perhaps 

most notably, I excluded connectionist models (e.g., Gluck & Bower, 1988; McClelland & 

Rogers, 2003; Rogers & McClelland, 2004). There is reason for their exclusion. Connectionist 

models have the ability to model or approximate large classes of input-output functions. 

However, to determine the exact space of similarity ratings that can be modeled by a particular 

network, we must perform significant simulations, except in specific networks that can model all 
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possible input-output relationships. Without analytic results about the input-output relationships 

that can be modeled by a particular neural network structure, there is no definite target for 

expression in the framework of probabilistic graphical models. Moreover, it is notoriously 

difficult to determine what representations are contained in a connectionist model, since much 

depends on the particular connection weights that emerge from a learning history. As a result, 

process equivalencies that directly map the symbolic operations of the connectionist model onto 

a graphical model are also not forthcoming.  

 

Probabilistic Graphical Models 

The central theoretical claim of this chapter is that the similarity functions from the 

previous section can be usefully and interestingly described in the framework of probabilistic 

graphical models. In this section, I outline two types of graphical models—Bayesian networks 

and Markov random fields—and then describe how various similarity functions are proportional 

to calculating P(X | Model), where Model is one of these probabilistic graphical models. That is, 

the various psychological theories make different predictions because they assume different 

graphical model types: a subclass of Bayesian networks for exemplar-based theories (the GCM), 

causal Bayesian networks for causal model theory, and a subclass of Markov random fields for 

prototype-based theories. Thus, these diverse theories can be viewed (from a mathematical point-

of-view) as different parameterizations of a single unified theory. These mathematical 

observations raise a range of psychological implications and questions; I take up those issues in 

the subsequent two sections. Due to space constraints, I have omitted the full proofs and 

technical details about the various equivalencies; the relevant mathematical specifics can all be 

found in Danks (2004, under review).  
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In general, probabilistic graphical models provide a compact representation of a 

probability distribution by encoding various facts about independence and association in some 

type of graph. Strevens (this volume) explores the importance of (usefully) compact 

representations of probability and statistical facts. Bayes nets are one of the most popular 

probabilistic graphical models for such purposes; I here provide a very brief introduction to the 

framework. (Neapolitan, 2003; Pearl, 2000; Spirtes, Glymour, & Scheines, 1993; and other 

chapters in this volume all provide more comprehensive introductions to Bayes nets.) It is 

important to realize that, despite the name, there is nothing intrinsically Bayesian about a Bayes 

net; the name is due to the original uses of the framework. One can be, but need not be, a 

Bayesian about Bayes nets.  

A Bayes net is defined relative to a set of variables; in our current setting, these are the 

observed features. One half of a Bayes net is a directed acyclic graph containing one node per 

variable/feature (see Figure 1). These nodes are (possibly) connected by directed edges (e.g., Fi 

 Fj), indicating an asymmetric relationship. In “simple” Bayes nets, the asymmetric 

relationship is purely probabilistic. In contrast, a causal Bayes net (used by causal model theory, 

as well as multiple psychological theories of causal reasoning) is a Bayes net in which the edges 

in the graph are provided a causal interpretation. If the causal interpretation is justified by 

background knowledge, then X  Y indicates that X is a direct cause of Y, where no particularly 

substantive theory of causation is presupposed (see Woodward, 2003, for one possibility). We 

use family terminology (e.g., ‘parent’ or ‘child’) to describe the graphical relationships. The 

‘acyclicity’ property of the graph means that there is no (non-trivial) arrow-following path from 

a variable back to itself (e.g., there cannot be a path like F1  F3  F17  F1 in the graph).  
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The other half of a Bayes net is a joint probability distribution (or density, for continuous 

variables) that specifies the probability of any particular set of feature values. When the causal 

interpretation is justified, the joint probability distribution encodes information about the 

quantitative causal dependencies among the variables. The two Bayes net components—the 

directed acyclic graph and the joint probability distribution—are connected by a Markov 

assumption: every variable is probabilistically independent of its non-descendants conditional on 

its graphical parents. This assumption implies that the joint probability distribution (density) 

factors as , where pa(Fi) denotes the graphical parents of Fi. The 

components are also connected by the Faithfulness assumption: the only probabilistic 

independencies are those predicted by the Markov assumption. The primary effect of the 

Faithfulness assumption is to exclude the possibility of multiple pathways whose effects exactly 

cancel out (e.g., X  Y  Z and X  Z, but X and Z are unconditionally independent). 

Faithfulness is assumed (either explicitly or implicitly) by essentially every Bayes net learning 

algorithm. An example of a Bayes net is provided in Figure 1. 

( ) ( )(∏
=

=
n

i
ii FpaFPXP

1

| )

[Insert Figure 1 about here] 

The causal model similarity function is already expressed using causal Bayes nets: the 

causal structure defining category A must be a causal Bayes net, and the similarity of X to A is 

given by the probability of X in the joint probability distribution represented by the causal Bayes 

net. That is, the similarity rating of X for category A is equal to P(X), where the probability 

distribution is represented by a causal Bayes net.v Thus, this categorization theory can easily be 

represented in terms of inference for probabilistic graphical models. 

Perhaps more surprisingly, Bayes nets can also be used to express the exemplar-based 

GCM similarity function. In general, the similarity functions used in these two-stage 
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categorization theories are defined for all possible instances. Therefore, the pattern of those 

ratings for a particular category is proportional to some probability distribution over those same 

possible instances. So for example, if we have some exemplar-based (i.e., GCM) category A with 

its corresponding similarity function, GCM(X, A), then there is necessarily some probability 

distribution P(X) such that GCM(X, A) ∝ P(X), for all instances X (i.e., there is some constant K 

such that GCM(X, A) = K × P(X) for all X). Hence, to establish an equivalence between the GCM 

and some probabilistic graphical model, it suffices to show that, for every probability distribution 

proportional to a possible set of ratings for a GCM category, there is a perfect map in some class 

of probabilistic graphical models, and vice versa. A graphical model provides a perfect map of a 

probability distribution if and only if the graph implies (by Markov and Faithfulness) all and 

only the probabilistic independencies that occur in that distribution. In general, the (high-level) 

strategy for expressing categorization theories in terms of probabilistic graphical models is: 

determine the patterns that could possibly be produced by (normalized) similarity functions, and 

then find a set of probabilistic graphical models that perfectly represent exactly those patterns. 

In the case of the exemplar-based GCM, consider a Bayes net with the directed acyclic 

graph in Figure 2. E is an unobserved variable whose number of values depends on the category 

being modeled. By the Markov assumption, the joint probability distribution for this Bayes net 

factors into P(E, F1, …, Fn) = P(E) × P(F1 | E) × … × P(Fn | E). The structure of this model is 

similar to the oft-used naïve Bayes models of machine learning classification problems, though 

the role and interpretation of the (unobserved) common cause is different in this situation. 

[Insert Figure 2 about here] 

Regardless of whether the features are binary (e.g., either present or absent) or continuous 

(e.g., height), every GCM category is proportional to a probability distribution over the Fi’s that 



 14

has a perfect map given by a Bayes netvi with this graph. That is, for every GCM category, there 

is a Bayes net with Figure 2 graph and associated probability distribution such that GCM(X, A) ∝ 

P(X) for every possible instance X over features F1, …, Fn. The converse of this claim holds with 

a slight addition: for every probability distribution over the observed Fi’s for a Bayes net with 

Figure 2 graph and a “regularity” constraint on the form of the P(Fi | E) terms, there is a GCM 

category whose ratings are proportional to that distribution. The exact regularity constraint 

depends on whether the features are binary or continuous, but neither constraint is particularly 

strong.vii Since similarity ratings are determined only up to a choice of scale, we can conclude 

that GCM categories and Bayes nets with a Figure 2 graph (plus regularity constraint) describe 

exactly the same set of similarity ratings; any responses that can be fit to one model can be fit to 

the other. 

In contrast, there is no corresponding equivalence between Bayes nets and prototype-

based categorization models with second-order features. These two types of models are 

fundamentally different, in that the inter-variable connections in a Bayes net are asymmetric 

(whether in a probabilistic or causal sense), while the second-order features are symmetric. 

Hence, we need a probabilistic graphical model with undirected edges between the features to 

indicate symmetric connections. This model-type is called a Markov random field (see, e.g., 

Darroch, Lauritzen, & Speed, 1980; Lauritzen, 1996 for more technical introductions). As with 

Bayes nets, Markov random fields are defined only relative to a set of variables (features), and 

are composed of a joint probability distribution (density) and a graph. In contrast with a Bayes 

net, though, a Markov random field graph contains undirected edges between the nodes (see 

Figure 3). Roughly speaking, two features being connected by an edge in the graph implies that 
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there is a probabilistic dependence between those features’ values, but no explanation of the 

correlation is given or presumed (and so there is no asymmetry between the variables).  

The graph and probability distribution in the Markov random field are connected by a 

Markov assumption: the probability of any feature value is dependent only on its graphical 

neighbors. So for example, in Figure 3, P(A) depends only on B and C; A is probabilistically 

independent of D and E, conditional on B and C. The Markov assumption implies that the joint 

probability distribution can be factored into the product of functions (called clique potentials) 

over the maximal cliques in the undirected graph. A graphical clique is any set of nodes for 

which every pair is connected by an edge, and a clique is maximal if adding any other variable 

renders it no longer a clique. Thus, the Markov assumption for a Markov random field G implies 

that, if the maximal cliques in G are denoted by C1, …, Cq, we can express the probability of 

some novel instance X as ( ) ( )∏
=

=
q

i
i Xg

Z
GXP

1

1| , where gi(X) depends only on the values of 

variables in Ci (and Z is a normalization constant). Figure 3 provides an example of a Markov 

random field, including both the graph and the factorization of the joint probability distribution 

into clique potentials.  

[Insert Figure 3 about here] 

As with Bayes nets and exemplar-based models, we can successfully apply the same 

high-level strategy to connect Markov random fields and prototype-based models. The patterns 

of ratings produced by prototype-based similarity functions can be understood as probability 

distributions, and we can represent that space of probability distributions in terms of Markov 

random fields. More specifically, for a particular (second-order feature) prototype-based 

category, its Markov random field counterpart contains an edge between two nodes (features) 

just when there is a second-order feature for those two. Then, for every possible pattern of 
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similarity ratings, there is a corresponding (proportional) probability distribution that has a 

perfect map given by the category’s Markov random field counterpart. And for every probability 

distribution with a Markov random field perfect map (whose clique potentials satisfy a further, 

relatively weak, regularity constraint), there is a corresponding prototype-based category whose 

similarity ratings are proportional to the distribution. Just as GCM-categories are equivalent to 

(probability distributions with perfect maps given by) Bayes nets with Figure 2 graph, (second-

order) prototype-based categories are equivalent to (the probability distributions for) a subset of 

Markov random fields.  

In summary, all three types of similarity functions (GCM, second-order prototype, and 

causal model) can be expressed (up to a scaling parameter) as computations of P(X | Model), 

where the differential theory predictions arise from different assumptions about the underlying 

graphical model. The precise psychological model ↔ graphical model relationships are: 

 GCM rating for X ↔ P(X | Bayes net with Figure 2 graph and constraint) 

 Second-order prototype rating for X ↔ P(X | Markov random fields with a constraint) 

 Causal model rating for X ↔ P(X | Causal Bayes net) 

The representation of category similarity functions as probability distributions has been 

previously explored by Myung (1994), Ashby & Alfonso-Reese (1995), and Rosseel (2002). In 

contrast to that work, the results detailed here use the framework of probabilistic graphical 

models, which allow us to extend the formal results to a broader class of prototype theories, as 

well as to include causal model theory. In related research, Nosofsky (1990) and Ashby & 

Maddox (1993) pursued a more direct strategy and found conditions in which exemplar models 

could be directly transformed into prototype models and vice versa without the framework of 

probability theory or graphical models (see also Barsalou, 1990). While important for 
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understanding those two theory-types, though, the direct results are not readily extensible to 

other psychological theories (e.g., causal model theory) because they do not situate the theories 

in a more general framework.  

With these equivalencies in hand, I now turn to their implications. The next two sections 

demonstrate several pragmatic uses of the representation of these models as probabilistic 

graphical models, including better understanding of existing experimental results, suggestions of 

novel experiments, and more speculatively, the possibility of interesting generalizations of 

existing psychological theories. 

 

Applying the Graphical Model Equivalencies 

The most obvious application of these equivalencies is to facilitate rapid determination of 

the conditions in which the categorization theories make differential predictions, thus enabling us 

to both explain previous experimental results, and construct appropriate novel experiments. In 

particular, if the two probabilistic graphical model-types can perfectly represent different 

probability distributions and people’s behavioral responses approximate the observed probability 

distribution for some category, then we can determine analytically whether some experiment is 

likely able to discriminate between the second-order prototype (=Markov random field) and 

causal model (=causal Bayes net) theories. In fact, the expressive potentials of Bayes nets and 

Markov random fields are appropriately overlapping. That is, there are probability distributions 

that can be represented perfectly by a Markov random field but not a Bayes net, and vice versa. 

There are also probability distributions (e.g., those equivalent to first-order prototype-based 

similarity functions) that can be represented perfectly by both Bayes nets and Markov random 

fields, as well as some that cannot be represented perfectly by models from either framework. 
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As a concrete example, there is no Bayes net that perfectly represents a probability 

distribution with the (Markov random field) factorization given in Figure 3. Thus, if Figure 3 

describes the actual underlying category structure (i.e., the probability that any novel instance 

comes from that category), then a causal-model-based categorizer would not be able to perfectly 

learn the category structure. Similarly, there is no Markov random field that perfectly represents 

a probability distribution with the (Bayes net) factorization in Figure 1, and so a categorizer 

using second-order prototype-based categories would not be able to accurately learn that 

category. Finally, a simple category structure consisting of uncorrelated features can be equally 

well-represented by models from both frameworks, and so no experiment based on such 

categories will be able to distinguish between causal model and second-order prototype-based 

categorization (i.e., the psychological theories should have equally good model fits). 

We can also apply this analysis to published—not just hypothetical—experiments. 

Rehder (2003a)’s common-cause condition uses a category probability distribution that can be 

equally well-represented by a Bayes net (= causal model) and a Markov random field (= second-

order prototype). As predicted, he found no model fit difference between the corresponding 

psychological theories (see Table 5, p. 729). In contrast, Rehder (2003a)’s common-effect 

condition used a probability distribution that can be represented by Bayes nets but not Markov 

random fields. Thus, the two psychological theories should be distinguishable by that 

experiment: second-order prototype categorizers will do poorly, and causal-model categorizers 

should do well. Alternately, if we assume that people can learn a wide range of category 

structures, then we should expect the second-order prototype theory to have a significantly worse 

model fit than the causal model theory. The subsequent data analysis found exactly that 

significant model-fit difference in favor of causal model theory, which can represent the 
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underlying probability distribution (see Table 5, p. 729). (See also Experiment 3 in Rehder, this 

volume, for further evidence of an asymmetry between common cause and common effect 

networks.) 

Finally, we can use this analysis to design experiments to push the outer boundaries of 

human category learning. As noted previously, there are probability distributions, and so 

categories, that none of the psychological theories can completely model. Correct theoretical 

predictions of cognitive failures (in this case, failure to correctly represent the category) are 

typically thought to constitute stronger evidence for a theory than predictions that people will 

behave close-to-optimally. Thus, a natural way to separate these three theory-types is to present 

individuals with categories whose structure cannot be mapped onto any of these representations 

without loss of information. In particular, we want to find categories for which each theory picks 

out different aspects of the structure, and so they predict different patterns of failure. Chain 

graphs are probabilistic graphical models that use both directed and undirected edges (further 

discussed below), and there are perfect map chain graphs for probability distributions with no 

Markov random field or Bayes net perfect map. One such graph is: F1  F2 — F3  F4.viii All 

three psychological theories predict that people will make significant, systematic, predictable 

errors when presented with a category with this structure, and those errors are predictable using 

the probabilistic graphical model equivalencies described here. The differential error predictions 

can then be used to better determine which theory best describes an individual’s categorization 

process. To my knowledge, no such experiment appears in the literature. 

In additional to methodological implications, these equivalencies suggest natural 

generalizations of existing psychological theories. The exemplar-based and second-order 

prototype-based similarity functions are equivalent with only subclasses of Bayes nets with 
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Figure 2 graphs and Markov random fields, respectively. In both cases, the equivalent graphical 

models have constraints on the probability distribution beyond those implied by the graphical 

model. From the probabilistic graphical model point-of-view, these additional constraints seem 

arbitrary, though they have a natural justification in terms of ensuring computational tractability. 

Setting aside computational issues, though, we might naturally consider generalizing the GCM to 

include patterns of similarity ratings that are proportional to any probability distribution with a 

perfect map Bayes net with Figure 2 graph. This generalization has a straightforward 

interpretation within the GCM framework: it corresponds to allowing exemplar-dependent 

feature saliences in the similarity function. Similarly, we can generalize the second-order 

prototype model to include any probability distribution with an arbitrary Markov random field 

perfect map. This generalization would significantly extend the scope of that theory, while 

retaining the basic intuition of prototype theories that the category representation is a summary 

of the observed category instances. Importantly, both of these generalizations remain bounded in 

explanatory power; there are experiments and patterns of similarity ratings, such as Rehder 

(2003a)’s common-effect condition, that can distinguish these generalizations from one another. 

Finally, these equivalencies suggest alternate responses to two existing problems for 

categorization theories: empirical support for (seemingly) inconsistent theories, and (apparent) 

shifts in category structure during learning. The first problem is that there is significant empirical 

evidence supporting all three of these psychological similarity ratings, depending on the 

particular domain, presentation format, contrast class, and so on. One response to this fact has 

been to argue that there are distinct cognitive systems for different categorization strategies (e.g., 

exemplar vs. rule-based), and that contextual factors and background knowledge determine 

which system is activated. This idea is supported by evidence from reaction time (Allen & 
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Brooks, 1991) and neuroimaging (Grossman, Smith, Koenig, Glosser, DeVita, Moore, & 

McMillan, 2002; Patalano, Smith, Jonides, & Koeppe, 2001; Smith, Patalano, & Jonides, 1998) 

studies (see also Machery, in press). In a similar vein, Ashby and his colleagues have argued that 

different neural systems underlie implicit and explicit category learning, which are distinguished 

by whether participants can give a simple, verbal rule to differentiate the categories (Ashby, 

Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Waldron, 2000; Waldron & Ashby, 2001). 

These proposals all share the underlying idea that there are multiple processing systems in the 

brain responsible for the different types of categories. 

The equivalencies described here suggest a different response to the range of empirical 

supports: the differential behaviors (perhaps) arise from differing parameterizations of a common 

categorization algorithm. That is, these distinct psychological theories might correspond to the 

same operation applied to three different representations (i.e., types of graphs), rather than 

distinct cognitive mechanisms. There might be only one process in which similarity ratings are 

based on P(X | Model), but where the particular category model-type depends on factors such as 

experiential history, context, other background knowledge, and so on. Differential behavior 

arises from different inputs to the same process, rather than fundamentally different processes. If 

the cognitive representation of the category structure is a Bayes net with Figure 2 graph, the 

person will exhibit GCM category behavior. If the representation is a suitable Markov random 

field or causal Bayes net, categorizations will be best understood using second-order prototype or 

causal model theory, respectively. Of course, this suggestion is not intended to demonstrate that 

there cannot possibly be multiple processes; rather, it is intended to defeat the (too quick) 

inference from “support for multiple theories” to “multiple cognitive processes must exist.” 
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Understanding the different categorization theories in terms of probability calculations 

using different representations also provides a straightforward solution to the problem of 

integrating similarity ratings of categories with different structures. Regardless of category 

structure, all of the similarity ratings are on the same scale and have a clear interpretation, and so 

can easily be integrated into a single, coherent behavioral response. In contrast, the “multiple 

systems” hypothesis must provide some further account (perhaps in terms of probabilities) to 

explain how similarity judgments from entirely distinct cognitive processes are integrated to 

produce well-defined categorization judgments.  

Finally, the underlying category structure type sometimes seems to change in response to 

repeated exposure to category examples (Johansen & Palmeri, 2002; Smith & Minda, 1998). For 

example, I might initially represent a category using a prototype, but shift to using an exemplar 

representation (or vice versa). Smith & Minda (1998) found that exemplar-based (specifically, 

GCM) structures were predominant throughout learning of small, poorly differentiated 

categories. During the learning of larger, more clearly delineated categories, however, there 

seemed to be a shift from prototype-based to exemplar-based category structures (see also Minda 

& Smith, 2001; Zaki, et al., 2003, and the overfitting worries of Olsson, et al., 2004). Johansen 

& Palmeri (2002) found a similar shift towards exemplar models during learning, though rule-

based categories rather than prototype-based ones were more prevalent in early stages of their 

experiments. Rehder (this volume) suggests other trajectories for shifts in underlying category 

structure type. 

The common framework of graphical models enables us to clearly articulate both 

theoretical and experimental questions about these phenomena. An immediate question that 

arises in these analyses centers on representational power. The experimental results were 
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analyzed by determining model fits for similarity responses at different times, and so the 

conclusions about likely shifts in category structure should be qualified by the precise model 

name. In particular, all of these analyses used only first-order prototype models; that is, they 

assumed that the category was represented by a single (perhaps unobserved) instance. The 

representational power of first-order prototype models is easily expressed in graphical model 

terms: they can only represent probability distributions whose perfect maps are Markov random 

fields with no edges between features, and so no inter-feature correlations. The GCM exemplar 

model, by contrast, can represent inter-feature correlations, though (for plausible instances) only 

of a certain type. As described above, the shifts from (apparent) prototype-based to (apparent) 

exemplar-based structures were more pronounced for categories with correlated features. Thus, 

given the significantly weaker representational power of first-order prototype models, it is 

entirely conceivable that these shifts in best-fitting model-type are due to this power imbalance, 

rather than actual cognitive changes. Reanalysis with a more sophisticated prototype model, 

perhaps one based on arbitrary Markov random fields, is warranted.  

 

Some Speculations about Human Categorization  

The previous sections focused on the equivalencies between three common similarity 

functions and computing P(X | Category), where the theories differ about the exact form of 

Category. These similarity ratings are the first stage in a two-stage process. The second stage is 

typically the Shepard-Luce rule: the probability of responding with category C for novel instance 

X is the similarity rating between C and X, divided by the sum of similarity ratings for all other 

considered categories. Mathematically, if similarity ratings correspond to P(X | Category), then 

use of the Shepard-Luce rule corresponds to computing P(Category | X) if every category under 
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consideration is equiprobable.ix Use of bias parameters in the Shepard-Luce rule (as in Logan, 

2004) then corresponds to allowing the possible categories to have different base rates. Thus, the 

complete (i.e., two-stage) theories solves arguably the central problem for categorization: given 

observations of a novel object’s features, determine the probability that it falls in one or another 

category.  

Moreover, the two stages of these theories are intended quite seriously: they are supposed 

to describe cognitively separable steps in categorization. So, for example, some experiments aim 

to obtain judgments of an item’s similarity to a particular category without invoking actual 

categorization judgments (e.g., Rehder, 2003a, though Barsalou, 1985 argues that many other 

factors enter into similarity ratings). Alternately, we might suppose that people’s conscious 

access to their categorization judgments is limited to the final output: in particular, P(Category | 

X), where Category can be one of several probabilistic graphical models, including a Bayes net 

with Figure 2 graph, a Markov random field, or a causal Bayes net.x That is, rather than 

(explicitly) categorizing in two distinct stages, people directly determine the category probability 

given the instance. The most notable previous example of categorization based directly on 

P(Category | X) is Anderson’s (1991) rational analysis model. However, Anderson’s model and 

subsequent extensions are not based on graphical models, and so are not considered here. 

The central difference between the one- and two-stage views of categorization lies in the 

requirement of a contrast category to compute anything in the first view, while no contrast 

category is required to compute the similarity ratings of the second view. Any computation of 

P(Category | X)—whether by one or two stages—presupposes that there is at least one 

alternative category, else the probability is just one (since Category is the only possibility). In 

contrast, no information about any alternative categories is required to compute P(X | Category), 
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which is all that is required for the first stage of the two-stage process. If categorization is really 

a one-stage process (i.e., the only conscious access is to the probability of the category given the 

instance, rather than intermediate similarity ratings), then one must explain the source of 

people’s similarity ratings in experimental settings. The most natural explanation is that 

“similarity ratings” are actually categorization judgments with some implicitly assumed contrast 

class. That is, judgments of the typicality of a novel instance X for some category A are not 

actually similarity ratings, but rather are people’s judgments of P(A | X) relative to an implicit 

contrast category not-A.  

If people’s similarity judgments are really categorization judgments, then they should be 

influenced by variations in the contrast class structure and base rate. One experimental test to 

distinguish one- from two-stage views would be to present people with a novel category and 

instances of that category, all with an explicit contrast class (i.e., instances not in the novel 

category are definitely in the contrast class). We could then ask for ratings of the typicality of 

novel instances for the target category, where we vary between conditions either the structure or 

base rate of the contrast category, but not of the target category. The central prediction in this 

proposed experiment is: if categorization is (consciously) a one-stage process, then there should 

be a statistically significant difference between similarity ratings in the conditions; if 

categorization is (consciously) a two-stage process, then there should be no such difference. 

Even though the structure of category A does not change, P(A | X) does change between 

conditions because of changes in the structure/base rate of the contrast class. The precise change 

will depend on the details of the contrast category structures (or base rates), but can be 

determined quantitatively. Importantly, note that this proposed experiment tests stability of 

representativeness (or similarity) judgments of some novel instance for a category, and not 
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categorization judgments. Both views agree that participants’ categorization judgments should 

vary as the contrast class structure or base rate vary; the disagreement is about whether the 

contrast class matters for the typicality ratings.  

Das-Smaal & De Swart (1986) performed an experiment similar in structure to this 

proposed one, and found limited evidence that representativeness (similarity) ratings for stimuli 

change depending on the contrast class. Unfortunately, they did not obtain typicality ratings for 

every possible combination of features, so we cannot use their experiment as even a first step 

towards development of a formal model. If these results can be suitably replicated and extended, 

then additional experiments can aim to determine (i) whether people have an implicit contrast 

class if not given an explicit one; and (ii) the structure of the implicit contrast class, if it exists.  

The reason for exploring categorization as a one-stage process is because it opens a range 

of mathematical possibilities. The one-stage view draws attention to the importance of 

incorporating multiple potential categories into a single mathematical/representational structure 

(since categories are never considered in isolation). As in the existing psychological theories, 

categories in the one-stage theory can be represented as probabilistic graphical models. We can 

incorporate multiple probabilistic graphical models into the same structure by the use of a 

(qualitatively stated) theorem: there is no mathematical difference between (i) determining which 

of several probabilistic graphical models is most probable; and (ii) determining the most 

probable value of a new variable (Category) that ranges over the possible categories, and is a 

graphical parent of the relevant features. That is, given several probabilistic graphical models, 

there is a mathematically equivalent single structure with a new, unobserved Category variable 

that acts as a switch to produce the appropriate probabilistic graphical model depending on 

which category is actual. In the Bayes net literature, this unobserved variable is a context 
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variable for a model with context-specific independence (CSI; see Boutilier, Friedman, 

Goldszmidt, & Koller, 1996; Poole & Zhang, 2003; Zhang & Poole, 1999). Thus, instead of 

modeling categorization as calculations of P(Category A | X), we can equivalently model it as 

calculations of P(CATEG = A | X) for a context variable CATEG whose values are the various 

mutually exclusive possible categories. This context variable is similar to the “Being a…” 

variables of Strevens’s (2000) minimal essentialism: the context (category) determines the 

structure (e.g., causal laws) for an individual, but no claims are made about how the context 

(category) does so.  

As an example of these two ways of thinking about the same (theoretical, mathematical) 

process, consider the category of ‘blicket’ studied by Gopnik and her colleagues (e.g., Gopnik, 

Glymour, Sobel, Schulz, Kushnir, & Danks, 2004). Blickets are objects that cause a particular 

machine (a ‘blicket detector’) to light up and play music. Thus, the category structure for blickets 

is represented as a causal Bayes net (since it is a causal model), and is given in the left-hand side 

of Figure 4. The (possibly implicit) contrast class of ‘not-blickets’ are all of the things that fail to 

activate the detector; that category’s causal structure is given in the right-hand side of Figure 4. 

The equivalent CSI causal Bayes net is given in Figure 5, where the probability of 

DetectorActivates only depends on the value of OnDetector if the context node Category has the 

value ‘blicket’. Purely as a visual aid, context variables will be indicated by a dashed circle. The 

theoretical equivalence here implies that there is no mathematical difference between calculating 

(i) P(left-hand structure | X) in Figure 4; and (ii) P(Category = blicket | X) in Figure 5. 

[Insert Figure 4 about here] 

[Insert Figure 5 about here] 
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The story gets a bit more complicated when we allow for the possibility that the different 

categories could have different underlying structures. In the above example, we could represent 

both category structures as causal Bayes nets. Suppose instead that one category structure is 

represented by a Markov random field (a second-order prototype-based category), and the other 

by a Bayes net (perhaps with Figure 2 graph). There is a third type of probabilistic graphical 

model—chain graphs—which contain both directed and undirected edges (Andersson, Madigan, 

& Perlman, 1996; Lauritzen & Richardson, 2002; Lauritzen & Wermuth, 1989; Richardson, 

1998). The precise interpretation of chain graphs with mixtures of edge types is the subject of 

current research (Lauritzen & Richardson, 2002), but Markov random fields and Bayes nets 

emerge as special cases in which either all of the edges are undirected, or all are directed. Thus, 

all of the probabilistic graphical models used in this chapter can themselves be unified in a single 

framework, and that framework can also exploit the CSI (context-specific independence) 

equivalence between (i) multiple structures, and (ii) a single structure with a context variable.  

This picture opens intriguing possibilities for developing integrated hierarchies of 

multiple category types (when the categories actually are hierarchical; see Malt & Johnson, 1992 

and Sloman, 1998 for doubts about this condition).xi Suppose we have a set of mutually 

exclusive categories (e.g., ‘dog’, ‘cat’, ‘mouse’, ‘human’, etc.) that are complete relative to some 

super-category (e.g., ‘mammal’), so every instance of the super-category can be placed into 

exactly one of the target categories. Then the context (category) variable for that set corresponds 

to the super-category, and will be a graphical parent of any feature that is part of one of the 

category models. Since the GCM, prototype, and causal model categories can all be represented 

as probabilistic graphical models, a single CSI chain graph model can account for the possibility 

that these categories do not have the same structure. No special difficulties arise if, for example, 
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‘dog’ is a causal model category, ‘cat’ is an second-order prototype (i.e., Markov random field) 

category, and ‘human’ is an exemplar-based GCM (i.e., Bayes net with Figure 2 graph) category. 

The resulting single graphical structure might look something like Figure 6. (Recall that context 

variables are indicated by a dashed circle for ease of presentation.) Note the undirected edges 

between features, indicating the association between # of Legs and Vocalization in the categories. 

[Insert Figure 6 about here] 

Representing mutually exclusive categories in a single graph provides one picture of how 

multiple categories could be cognitively represented in a single category structure. Moreover, 

because this unified model does not require us to choose between the various psychological 

theories, it inherits their explanatory power (though no account has been given of why a category 

is represented using a particular structure). The proposal here is thus consistent with previous 

data supporting these psychological theories. In addition, this unified model provides a plausible 

mechanism for including one type of prior knowledge about contrast class. Background 

knowledge about a situation (e.g., I am on land, so all possible animals must be capable of living 

on land) is equivalent to conditioning on one or more features prior to categorization, which will 

change the prior distribution of category probabilities. In this example, P(Category = ‘Whale’) in 

Figure 6 will be very low, even before I observe any features of a particular instance. 

Further hierarchies of categories can be straightforwardly modeled in this theory by 

introducing a node that is a parent (or neighbor) of the Category node. The values of this new 

variable will range over the super-class encoded in Category, as well as the categories that are 

complete and mutually exclusive for the super-class level of the hierarchy. The new variable 

(e.g., AnimalType in Figure 7) is the CSI context variable for its children (e.g., BirdType, 

MammalType, etc.). Moreover, since the super-class variable (e.g., AnimalType) is itself a node, 
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it can have various observed features as its (graphical) children, in addition to other context 

variables. One plausible resulting model structure is shown in Figure 7, where context variable 

names have been made more descriptive, and obviously not all relevant variables are included. 

(Inter-context connections are indicated by dashed edges. As with the dashed circles for context 

variables, this notation is intended purely as a visual aid.)  

[Insert Figure 7 about here] 

By attaching features to the super-class in addition to the sub-class, we can arguably 

explain two contrasting phenomena: (i) some properties (e.g., lactation) are more readily 

identified with the super-class (mammal) than with any of the sub-classes (e.g., dog); while (ii) 

the presence of those features nevertheless increases the likelihood of the sub-classes. These two 

phenomena can only be explained by a framework in which (i) features can be attached (in some 

sense) directly to the super-class; and (ii) there are meaningful connections between the super-

class and the sub-class(es). In this model, Lactates is directly associated with AnimalType = 

mammal rather than any specific mammal, but the Lactates = Yes observation increases the 

probability that AnimalType = mammal, thereby increasing the (unconditional) probability that 

the individual has each possible MammalType. Thus, in this (potential) unified framework, we 

have a precise, mathematically well-specified representations of hierarchies of multiple specific 

types of category structure, where no particular level of the hierarchy is privileged a priori. Of 

course, the empirical adequacy of this admittedly quite complicated unified framework remains a 

substantial open question. 

 

Conclusion 



 31

The central theoretical results of this chapter provide a common language for several 

major psychological theories of categorization: Generalized Context Models as Bayesian 

networks with a particular graphical structure; second-order prototype models as Markov random 

fields; and causal model categories as causal Bayesian networks. The expression of these 

theories as probabilistic graphical models opens up a number of methodological and theoretical 

possibilities. We can readily determine why some experimental designs are unable to distinguish 

among these theories on the basis of model fits, and so design better, more discriminating 

experiments. In particular, we can construct category structures which cannot be represented 

perfectly by any of the psychological theories to determine which theory (if any) correctly 

predicts people’s systematic errors. These equivalencies also point towards natural 

generalizations of the psychological theories, corresponding to elimination of various non-

graphical constraints on the probability distributions. These generalizations can easily be tested; 

for example, we could examine people’s performance on categories that can be modeled by an 

arbitrary Markov random field, but not one that corresponds to an second-order prototype model. 

Moreover, this work suggests a different understanding of the categorization process, and not 

just similarity ratings.  

Categorization judgments in these psychological theories all correspond to calculating 

P(Category | novel instance X) when every considered category is equiprobable via a two-stage 

process: calculate the similarity ratings (i.e., P(X | Category) for each category), and then use the 

Shepard-Luce choice rule to get P(Category | X). In contrast, we can consider a categorization 

theory that directly computes P(Category | X), without explicitly computing similarity ratings as 

an intermediate step. Experimental elicitations of similarity ratings are, on this model, just 

categorization judgments relative to an implicit, unspecified contrast class. There is some 
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preliminary evidence for the idea that all judgments, even typicality ones, are relative to a 

contrast class. However, significantly more experimental investigation is required. Finally, we 

can represent all of these probabilistic graphical models as chain graphs, and place them into a 

single graphical model hierarchy by exploiting various context-specific independencies. This 

process unifies multiple category-types into a single, coherent graphical structure. 

But the results described here matter for more than just categorization research. There is 

clearly a close interdependence between (at least some) causal cognition and (some) 

categorization. Causal beliefs and learning shape some of our categorization decisions, including 

categorizing some novel object, and selecting or learning categories for representing the world. 

In the other direction, our causal learning and decision-making depends upon both the ways in 

which we categorize our world, and the properties we infer about novel objects based on their 

category membership. Despite these connections, much of the research in the two fields, whether 

psychological, philosophical, or computational, has essentially ignored the importance of the 

other. Frequently, substantial allusions are made to the importance of the other field, but then the 

other field plays no theoretical or experimental role. Given the scope of these cognitive 

processes, this has been a reasonable research strategy: at least initially, we should divide-and-

conquer. A range of recent psychological and theoretical research has started to shift this trend, 

but a common mathematical framework is needed for the two domains. The equivalencies 

detailed in this chapter thus provide an important early step for the integration of research on 

categorization and causation: the representation of a major component of categorization theories 

as probabilistic graphical models, which are the emerging consensus framework for modeling 

large portions of causal learning and inference.  
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Captions 

Figure 1: Example Bayesian network 

Figure 2: Bayesian network analogue for the Generalized Context Model 

Figure 3: Example Markov random field 

Figure 4: (a) Causal category structure for blickets; (b) Causal category structure for not-blickets 

Figure 5: CSI Bayesian network for the blicket category 

Figure 6: One-layer category structure 

Figure 7: Multi-layer category structure 
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Figure 1 
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P(A, B, C, D, E) = P(A) × P(B | A) × P(C | A) × P(D | B, C, E) × P(E) 
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Figure 2 
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Figure 3 
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P(A, B, C, D, E) = G1(A, B) × G2(A, C) × G3(B, D) × G4(C, D) × G5(D, E) 
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Figure 4 
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Figure 5 
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Figure 6 

 

Omnivore 
[yes, no] 

Vocalization 
[meow, bark, etc.] 

Category 
[dog, cat, mouse, 

human, etc.] 

# of Legs 
[2, 3, 4] 
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Figure 7 
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# of Legs 
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AnimalType 
[mammal, bird, 

reptile, etc.] 

BirdType 
[robin, sparrow, 
penguin, etc.] 

Lactates 
[yes, no] 

Warm-blooded 
[yes, no] 
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i Many-valued features can be modeled as multiple binary features as in the SUSTAIN model 

(e.g., Love, Medin, & Gureckis, 2004), though at some computational cost. Note a feature is 

binary or continuous based on values that it might plausibly take, and not the actually observed 

values. For example, height is continuously-valued even though, in real life, we only see finitely 

many values for height in a population. 

ii  We thus collapse together, e.g., Erickson & Kruschke’s (1998) ATRIUM model, Kruschke’s 

(1992) ALCOVE model, Lamberts’s (1998, 2000) EGCM model, and Nosofsky & Palmeri’s 

(1997) EBRW, which are all equivalent to Nosofsky’s (1986) Generalized Context Model for 

static problems. An interesting open question is whether the equivalencies described here can be 

used to understand the theoretic relationships among the response time models. 

iii The GCM is equivalently (and more typically) expressed as the exponential of a sum of 

distances, rather than the product of exponentials used here. The GCM also allows for other 

distance measures (e.g., Euclidean); the equivalencies described in the next section continue to 

hold for other distance measures (though with different auxiliary conditions).  

iv Early prototype models assumed that the similarity ratings were the sum of the distance on 

each dimension, rather than the product. Subsequent work has shown these additive models to be 

worse than multiplicative ones (see, e.g., Minda & Smith, 2001). 

v More precisely, there must be a Bayes net in which the graph is a perfect map for (i.e., is 

Markov and Faithful to) the probability distribution. 

vi It does not actually matter whether the graphical structure is treated as a Bayes net or a Markov 

random field (where every directed edge is converted to an undirected edge). The set of 

probability distributions is the same. 
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vii There is an apparent tension here between: (i) the condition of a regularity constraint on the 

P(Fi | E) terms (suggesting that the GCM cannot model all probability distributions); and (ii) 

Ashby & Alfonso-Reese’s (1995) proof that the GCM can, in the limit of infinitely many 

exemplars, model any probability distribution. Given that the notion of “infinitely many 

exemplars” is psychologically unrealistic, the equivalencies described here require the category 

to have only as many exemplars as E (the unobserved variable) has values. That restriction 

results in the need for the regularity constraint. 

viii Using the Lauritzen-Wermuth-Frydenberg chain graph Markov property, this graph implies: 

F1 _||_ F4; F1 _||_ F3 | {F2, F4}; and F2 _||_ F4 | {F1, F3}. 

ix Proof: Using the equivalencies in the Luce choice rule yields: P(respond “A” | X) = P(X | A) / 

ΣP(X | M). Multiply the top and bottom by P(A), and use P(A) = P(M) for all M to reduce to P(X | 

A) × P(A) / P(X), which is just P(A | X). 

x This type of theory is frequently called ‘Bayesian,’ particularly by computer scientists and 

statisticians. I will avoid using that term here, since for many philosophers and psychologists, 

‘Bayesian’ includes a much larger set of commitments than this theory requires. 

xi The following discussion is quite qualitative, but the proposed framework has a precise 

mathematical description. 


