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The Supposed Competition between
Theories of Human Causal Inference

David Danks

Newsome ((2003). The debate between current versions of covariation and mechanism
approaches to causal inference. Philosophical Psychology, 16, 87–107.) recently

published a critical review of psychological theories of human causal inference. In that
review, he characterized covariation and mechanism theories, the two dominant theory

types, as competing, and offered possible ways to integrate them. I argue that Newsome
has misunderstood the theoretical landscape, and that covariation and mechanism
theories do not directly conflict. Rather, they rely on distinct sets of reliable indicators of

causation, and focus on different types of causation (type vs. token). There are certainly
debates in the research field, but the theoretical landscape is not as fractured as Newsome

suggests, and a potential unifying framework has already emerged using causal Bayes
nets. Philosophical work on causal epistemology matters for psychologists, but not in the

way Newsome suggests.

1. Introduction

The vast majority of our decisions are influenced—at least in part—by our beliefs

about the causal structure of the world. Thus, an obvious psychological problem

is to determine the source(s) of those beliefs, including both prior knowledge and

de novo learning. The last 20 years have witnessed a (relative) explosion of

psychological research on this problem, resulting in a range of theories and

experiments. Newsome (2003) recently undertook a much-needed critical review

of some of those theories. Unfortunately, his review is marred by (i) the mistaken

belief that the two current types of human causal inference theories (a) are the only

active theory types and (b) are direct competitors; (ii) overly ambitious criteria for

determining the value of a theory of causal inference; and (iii) a failure to discuss an

extant theory that arguably performs the very unification for which he calls.
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Psychological theories of causal inference are typically placed into one of two

camps, though the actual theoretical state of affairs is not this clean. (I will return to
this point later.) Covariation theories model people’s inferences of causal relation-

ships between variables (types) when they are provided with statistical information,
but are unable to use prior knowledge to any substantive degree. There are many

different covariation theories; Newsome reviews a subset of them: specifically,
Cheng and Novick’s (1990, 1992) probabilistic contrast model, Cheng’s (1997) power

PC theory,1 and Glymour’s (1998, 2000) extension of the power PC theory to Bayes
nets composed of noisy-OR and noisy-AND gates. Mechanism theories focus on
inference of the particular causal relationship active in an event (token) given prior

knowledge and possibly some statistical information. The only current mechanism
theory, also reviewed by Newsome, was developed by Ahn and her collaborators

(e.g. Ahn & Bailenson, 1996; Ahn, Kalish, Medin, & Gelman, 1995). Newsome raises
difficulties and notes open problems for all of these theories (though he has

essentially no discussion of the various empirical supports for each of the theories).
He then argues that there are deep differences in the theoretical commitments of

the two theory types. Despite the differences he finds, Newsome argues that the
two theory types could be usefully integrated into a single theory of human causal
inference. Moreover, he concludes that this integration of psychological theories

would be significantly advanced by attending to definitions and distinctions that
emerge from philosophical work on the nature of causation and mechanisms.

Unfortunately, Newsome fundamentally misrepresents the theoretical landscape.
Throughout his paper, he consistently describes the theories and makes arguments

as though covariation and mechanism theories are direct competitors. That is, he
seems to think that it is impossible that both mechanism and covariation theories

could be correct (in any substantive sense). This misunderstanding is particularly
surprising, since Newsome liberally cites Glymour (1998, p. 39), who claimed in his

abstract that mechanism versus covariation is a ‘false and confused dichotomy’.
Moreover, Newsome attempts to integrate the two theory types, which is only
sensible if they do not directly contradict each other. Perhaps because he does not

fully recognize this, his integration is of the ‘mix-and-match’ variety: he incorporates
only some elements from covariation and others from mechanism theories, and

leaves much out. It is not a true integration.
In the following sections, I argue that covariation and mechanism theories

of human causal inference need not be direct competitors. In particular, the
third section of this paper explores the interaction between metaphysical and

epistemological theories of causation to try to determine whether we can conclude
anything substantive from the fact that human causal inference in the two
psychological theory types is based on different indicators of causation. Before

diving into that issue, however, the second section attempts to clarify the target of
theories of human causal inference: what are they trying to explain? In the fourth

section, I describe a psychological theory (or family of theories) that has emerged in
the past five years that argues that people use (something like) causal Bayes nets to

represent causal beliefs. Covariation and mechanism theories are quite easily unified
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in this framework, particularly when we examine what is really required theoretically

to explain the mechanism theory experiments. Contrary to Newsome’s advice, I argue

that there is no reason for psychologists currently working in this field to be deeply

focused on philosophical accounts of ‘mechanism’.

Of course, all of this is not to suggest that there are no real debates in the field

of human causal inference. There are substantial debates between covariation

theorists about the exact processes people use to learn from statistical information.

There are disagreements about the amount of prior knowledge brought to bear in

the various experimental settings. There are theoretical questions about the roles

of unconscious processing versus deductive reasoning. There is emerging evidence

that people use a range of strategies for causal learning, but these individual

differences are relatively unexplored. But all of these questions are essentially

orthogonal to the covariation versus mechanism debate on which Newsome focuses,

and which is the focus here.

2. What Must a Theory of Causal Inference Explain?

Before focusing on whether the two types of theories are competitors, we should be

clearer about exactly what they are intended to explain. That being said, I will not

offer an explicit positive account of the domain of human causal inference theories,

primarily because there does not seem to be any such single, sharply defined domain.

Rather, there are a variety of ‘target questions’, as will become clearer in subsequent

sections. This section thus argues only that there are some problems a theory of

human causal inference should not be expected to explain at this stage in research.
Specifically, Newsome argues that covariation theories do ‘not provide an adequate

account for one important issue: how do cognizers identify candidate causes

and relevant evidence from the indefinitely large pool of possible representations?’

(p. 93).2 That is, since covariation theories operate on some small set of cause/effect

variables and there are infinitely many different variables we can use to represent

the world, covariation theories are hopelessly underspecified and do not (in their

current form) apply to actual, computationally bounded, people. This worry seems

to be Newsome’s primary (only?) conceptual objection to covariation theories.

Covariation theories would apparently be good models for human causal inference

in the absence of prior knowledge, if only they could explain how people determine

what variables exist in the world, as well as which are potentially causally relevant in

each particular domain.

The general problem to which Newsome alludes—that of variable definition

and identification—is a hard, interesting problem. Moreover, this problem arises

not just for theories in cognitive psychology, but also for algorithms in a variety of

data mining and machine learning contexts, since most machine-learning algorithms

presuppose some specification of the data in terms of variables. And some

covariation theorists recognize explicitly that their theories fall short of solving the

variable definition problem. For example, Cheng’s (1997, p. 370) exposition of the

power PC theory noted that her theory concerns causal inference ‘when candidate
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causes and effects are clearly defined’. Alternately, there are various suggestions

for solving this problem that Newsome overlooks: Glymour (2000) suggests,
on computational and statistical grounds, several heuristics for forming new variables

for causal inference; more famously, Eleanor Rosch and many others have
given psychological evidence for different levels of feature selection (i.e. variable

definition), although this work has not been well integrated into studies of causal
inference (e.g., Rosch & Mervis, 1975).

However, the gap Newsome identifies—though present—does not seem to be one
we should expect a theory of causal inference to close. Arguing that covariation
theories are somehow incomplete because they do not solve this problem is

analogous to claiming that a psychological theory of decision making is incomplete
unless it provides an account of the perceptual processes by which the decision maker

learns about her environment. No one would deny that decision making almost
always requires obtaining some sort of information from the environment, but we

do not criticize a psychological theory of decision making for taking perceptual
information as a given. Of course, we would like to have both accounts, but it seems

reasonable to tackle these problems separately, at least at first. Our scientific theories
are inevitably bounded in scope, and so each must take some kind of information or
representation as a well-defined input. For the moment, research on human causal

inference takes well-defined variables as input. Newsome seems to expect too much
when he chastises the covariation theorists for bracketing off the variable definition

problem, particularly since the psychologists explicitly state what features of the
problem are assumed to be well defined.

But perhaps I have misunderstood Newsome’s criticism. The quoted passage
suggested two distinct problems: parsing the world into variables, and labeling some

of those variables as potentially causally relevant to each other. The above discussion
argued that the former problem can correctly be bracketed off by covariation

theorists for now. Perhaps Newsome’s concern is really the latter problem: for which
cluster of variables should we do causal inference (whatever that might be)? For
example, he also says that ‘[causal] induction requires constraints because of

computational complexity’ (p. 94). This passage suggests a concern that, even if
we have a solution to the variable definition problem, there will still be many more

variables in a particular setting than could possibly be simultaneously considered
by a computationally bounded person. Given a list of descriptive variables for any

particular situation, how does the causal learner decide which variables to consider?
Rather than requiring a covariation theory to explain variable definition, Newsome

might just be asking for a model of the labeling of some subset of variables as
potentially causally relevant.
There are several different responses a covariation theorist could make at this

point. One response might plausibly be to respond that this problem can also
legitimately be bracketed off by a covariation theory. Given the extreme diversity

of possible situations, this worry threatens to grow into essentially one version of
the frame problem: given an arbitrary situation, are there (logical, computational)

rules for determining which variables are relevant—causally relevant, in this case?
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A covariation theorist could reasonably maintain that solving the ‘frame problem’

falls outside of the domain of her theory.
A different response to this problem would be to try to develop exactly the sort

of theory Newsome requests. One type of theory could argue that people try to
learn, one by one, the variables that are causally connected in some domain,

and then integrate the various distinct learned relationships. There is a normative
theory for integrating separately learned causal relationships into a single causal

structure (Danks, 2002), as well as psychological evidence that people do integrate
causal relationships in relatively sensible ways (Hagmeyer & Waldmann, submitted).
A different route would be to attempt to give a theory directly explaining which

variables are labeled as potentially causally relevant. Gopnik, Glymour, Sobel, Schulz,
Kushnir, & Danks (2004) have an extended discussion of different possible methods

for picking out relevant variables for their theory of causal inference as Bayes net
learning. Lien and Cheng (2000) provide some data about which properties of novel

materials are picked out as causal. Alternately, several theories have been offered to
explain how people determine which properties of an object are ‘projectible’ (to use

the philosophical jargon) to other objects (e.g. the neural networks/neuroscience
model offered by McClelland & Rogers, 2003). These theories could provide the
resources to determine which variables in a particular case are viewed as ‘potentially

causally relevant.’
There is one final interpretation of Newsome’s worry: namely, that he is concerned

that most covariation theories assume a prior division of the relevant variables
into potential causes and the effect. That is, most extant covariation theories assume

more than just a small set of well-defined, potentially causally relevant variables. They
also assume that we already know which of those variables are the potential causes,

and which is the putative effect. The various theories leave open the exact process
by which the variable ordering is established—perhaps prior knowledge, perhaps

temporal information, perhaps some process based on the first few instances.
This assumption is a serious, well-justified concern about covariation theories, since
it seemingly forces causal learning into a highly artificial framework. We often

are confronted with causal learning situations in which we do not know what
is cause and what is effect, and these covariation theories simply do not apply

to those situations. That being said, I will later advocate a different theory of
causal learning—namely, causal Bayes nets—that does not require this a priori

division, and so I will not dwell further on the problem here.
We might also ask whether mechanism theories—which also attempt to explain

causal inference—have any machinery to explain either variable labeling or cause/
effect separation. Newsome identifies mechanism theories as supposing that people
‘might use their understanding of the causal structure of the world and their

knowledge of potential mechanisms to (1) identify candidate causes . . . , and (2)
identify relevant evidence’ (p. 96). The only reason Newsome does not make these

resources available to a covariation theorist is that he seems to think that the two
types of theories are mutually exclusive. If the two types of theories are not direct

competitors, then there is no reason to deny the covariation theorist the resources
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available to the mechanism theorist (in particular, prior domain knowledge and

analogical reasoning). If they are instead compatible, then the problem of variable

labeling is either a problem for every theory of causal inference, or none of them.

We are thus led to ask whether the two theory types really compete.

3. The Compatibility of Covariation and Mechanism Theories

We can immediately point out one way in which the two theory types do not

currently compete: covariation theories focus on type causation, and mechanism

theories on token causation (though this separation is largely contingent—see

below). Covariation theories talk about learning ‘Smoking causes cancer’, and

mechanism theories talk about whether ‘John’s smoking caused his cancer’. That

being said, Newsome quite correctly points out that we cannot dismiss the possibility

of competition this easily. The theory types focus on different aspects of

causal inference, but we should naturally expect them to extend their reach into

each other’s sub-domains, producing covariation theories of token causation and

mechanism theories of type causation. If, as Newsome argues, they are radically

different theory types, or have substantively different theoretical commitments,

then we can anticipate that problems will emerge when these extensions happen.

We should thus attempt to identify and reconcile those differences now, rather than

later. In fact, these extensions are already occurring, at least at the normative level.

Pearl (2000), Halpern and Pearl (2001a, b), Hitchcock (2001), and Glymour and

Wimberly (in press) all offer accounts of token causation based on Bayes nets,

the formalism to which Glymour (1998, 2000) extended the power PC theory.

Psychological investigation of these accounts has only recently begun (e.g. Sloman &

Lagnado, 2002).
The situation is roughly analogous to a hypothetical debate between an exemplar

theory of categorization and a feature-based theory of concept learning. On one level,

the theories focus on different phenomena (categorization judgments in the former,

concept acquisition in the latter), but the two theories also make fundamentally

different assumptions about the ways in which people learn and think about

their world. Thus, any natural extensions of the two theories will directly compete,

and so we can try to design ‘critical experiments’ now whose outcome might

conclusively rule in favor of one or the other type of theory.

If the two theory types make radically different theoretical assumptions, then it

seems reasonable to worry about their mutual consistency. Newsome argues that

they have different theoretical assumptions because they are based (perhaps

implicitly) on different theories of causation. This latter claim seems to be based

on roughly the following line of reasoning. Philosophical accounts of the nature of

causal relationships have tended to treat causation as a well-defined, unitary ‘natural

kind’ whose precise specification is the object of debate (though see Skyrms, 1984,

for a very different perspective). Regardless of the particular metaphysical account,

the unitary nature of causation should lead to some relatively narrow, coherent set

of reliable indicators of causation. These indicators need not be constitutive of
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causation, of course, but they should be reliable signals of it. It is also critical that

people’s beliefs about the causal relationships in our world be approximately correct
if they are to plan, predict, take action, and so on. Therefore, we should expect

that human cognition will pick up on this well-defined, unitary set of signals
indicating causation, whatever it might be. Covariation and mechanism theories

do, in fact, point towards different indicators (probabilistic relationships in
covariation theories, some sort of ‘transfer of power’ in mechanism theories), and

so—at the very least—must make different theoretical commitments.
Indeed, Newsome sometimes goes further and argues that the two types of

psychological theories truly have different metaphysical commitments about

causation. For example, he writes that ‘covariation theorists assume that causal
facts are reducible to non-causal facts about consistent patterns of covariation’

(p. 99). This is simply false, and seriously misreads an explicit literature. The
paradigmatic covariation theory for Newsome is Cheng’s (1997) power PC theory,

which was heavily influenced (unconsciously at the time, consciously now) by
Cartwright’s (1989) theory of causal capacities. Cartwright argues simultaneously

that (i) causal relationships can be learned from statistical relationships in the
world (given certain background knowledge or assumptions), but also (ii) causation
is not reducible simply to those statistical relationships. No reduction of causation

to probability is envisioned, and such a reduction has been explicitly denied by
both Cartwright and Cheng.

In a similar vein, Newsome suggests that another point of difference between
the covariation and mechanism theories is ‘whether all the fundamental laws

of nature are universal [i.e. mechanism theories], or at least some laws are
irreducibly statistical [i.e. covariation theories]’ (p. 97). But such remarks miss the

very point of this psychological theorizing. These are theories of how people think
about causation and make judgments and inferences about causation. Neither

covariation nor mechanism theorists claim people are metaphysicians of any
particular kind, nor need they. The covariation theorist can readily admit the
existence of universal (deterministic) laws, while still thinking that people often

draw causal conclusions from the probabilistic (due to lack of knowledge)
phenomena we observe in the everyday world. And the mechanism theorist can

allow that some fundamental laws are statistical, as long as there are still signals of the
‘transfer of power.’ The signals may not always occur, but that does not make them

unreliable indicators of a causal connection.
Setting aside these confusions about the psychologists’ metaphysical versus

epistemological commitments, Newsome’s ‘competition position’ assumes that
causation is a well-defined ‘natural kind’, and concludes that there ‘should’
(in some sense) be some unique, narrow set of reliable indicators of causation that

people exploit. However, this conclusion simply does not follow. Causation can be
a single, well-defined type, and yet there might be multiple ways of learning

about particular causal relationships. For example, even if a conserved/invariant
quantity theory (as in Dowe, 1992, 2000) is correct, there could still be different

reliable indicators of causation in different domains. Physical contact will be a
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crucial indicator for object collision (as classically demonstrated in Michotte, 1963),

but physical contact might be irrelevant as an indicator for ‘social causation’ (e.g. my

daughter’s cry causing me to talk to her gently). Even though we might believe

(under this theory of causation) that the full social causation story involves physical

contact (of vibrating air molecules, released neurotransmitters, and so on), visible

physical contact (or lack thereof ) is not a reliable indicator of causation in this

situation because the relevant physical contact is unobserved. Even if we accept the

claim that causation—or even just our beliefs about causation—forms (or should

form) a single ‘natural kind’, we cannot conclude that there must be a narrow set of

reliable indicators of causation. If we cannot draw this conclusion, then there is

no compelling justification for viewing the covariation and mechanism approaches

as competitors.

In fact, there is some justification for drawing the opposite conclusion. As the

above discussion indicates, it seems to be an empirical fact about our world that there

actually are quite diverse signals of causation in different domains. And the existence

of multiple reliable indicators does tell us something about the epistemology of

causation: namely, that there is no reason to expect that people have only one causal

inference algorithm. For example, there may be a (close-to-)hard-wired cognitive

‘module’ for making causal inferences from the Michotte-ean perception of object

collisions, in addition to procedures for learning from data alone, from prior

knowledge, and so on (for more on the idea of multiple psychological causal

inference procedures, see Gopnik et al., 2004). And of more immediate relevance,

it is entirely plausible—given the range of indicators of causation—that both the

covariation and mechanism theories are correct, but that they are applied in different

settings and domains. Or perhaps the covariation and mechanism theories are two

different types of inference on a single representation of causal relationships. We now

turn to explore this latter possibility.

4. Integrating Covariation and Mechanism Theories

If we recognize that covariation and mechanism theories are not necessarily

competitors, then we can ask whether they can be incorporated into a single

representational framework. In the past five years, there has been a substantial

convergence of evidence from both cognitive and developmental psychology

supporting the hypothesis that people represent (at least some of ) their causal

beliefs using a representation roughly like a Bayes net (e.g., Danks, Griffiths,

& Tenenbaum, 2003; Glymour, 1998, 2000; Gopnik et al., 2004; Lagnado & Sloman,

2002, 2004; Sloman & Lagnado, 2002; Steyvers, Tenenbaum, Wagenmakers, & Blum,

2003; Tenenbaum & Griffiths, 2001, 2003; Tenenbaum & Niyogi, 2003; Waldmann &

Martignon, 1998). If people actually do represent some of their causal beliefs using

(something like) Bayes nets, then the unification of covariation and mechanism

theories follows quite naturally, at least at the theory-type level.

Without going into substantial technical detail, a Bayes net is composed of a

directed acyclic graph with a node for each observed variable, and a probability
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distribution over values in the nodes (see Neapolitan, 2003; Pearl, 2000; or Spirtes,

Glymour, & Scheines, 1993, for more details). The crucial component for our
purposes is the directed graph, since it encodes qualitative information about causal

connections. Specifically, if the Bayes net is given a causal interpretation, then X!Y
in the graph means ‘X is a direct cause of Y relative to the variables in the graph’.

(Only a weak metaphysical account of causation is needed here; a stronger, more
complete explication is given in Woodward, 2003.) Causal Bayes nets are clearly not

appropriate representations for all types of causal beliefs or knowledge. For example,
they do not provide good models of the spread of diseases. They also do not easily
model systems with feedback or continuously varying (in time) causal influence,

unless we substantially modify the representation. However, for a wide range of
domains and problems, causal Bayes nets have proven to provide useful, accurate

representations of causal relationships. And the above-noted psychological research
has all supported the hypothesis that people unconsciously use something like a

Bayes net (or at least the graphical component of a Bayes net) to represent some
of their causal beliefs.

There has also been substantial theoretical work over the past few years showing
how covariation theories of causal inference fit into the Bayes net framework.
Some covariation theories (specifically, the probabilistic contrast and power PC

theories) have been shown to be maximum likelihood estimators of parameters in
a fixed-graph Bayes net (Glymour, 1998; Tenenbaum & Griffiths, 2001). That is,

these theories correspond to ones in which people assume that the world has the
structure C! E A (where C is the potential cause, E is the effect, and A includes

all other alternative causes), and then try to estimate the parameter (‘causal power’ or
‘causal strength’) associated with the C! E edge. The two psychological theories

just correspond to different beliefs about how causes exert influence on their effects
(i.e. different parameterizations of the Bayes net).

In addition to mapping existing covariation theories into the Bayes net framework,
there are arguably covariation-type theories that are ‘native’ to Bayes nets. Recall that
covariation theories assume that people are given (statistical) data about the world,

but have no substantive prior knowledge to apply. There has been substantial work by
statisticians and computer scientists using Bayes nets to try to learn causal relations in

these situations; there are numerous algorithms for learning (as much as possible
about) the graphical structure of a Bayes net from data about variables in the world.

Recent experimental results suggest that people are—in covariation-type settings—
potentially using these algorithms (or close variants) to infer causal structure,

modeled as the graphical structure of a Bayes net (Danks et al., 2003; Steyvers et al.,
2003; Tenenbaum & Griffiths, 2001, 2003). In fact, one prominent current debate in
the psychological literature concerns the precise methods used to learn the causal

(Bayes net) structure: Bayesian learning (Steyvers et al., 2003; Tenenbaum & Griffiths,
2001, 2003) versus constraint-based learning (Gopnik et al., 2004) versus top-down

learning (Waldmann & Martignon, 1998; Lagnado & Sloman, 2004).
Integrating mechanism-type causal inference theories into the causal Bayes net

framework is a bit trickier, since mechanism theories have been expressed more
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vaguely and less quantitatively than covariation theories. In general, the experimental

results obtained by mechanism-type theorists can all be explained through (i) an
account of the introduction of intervening variables, and (ii) some theory of token

causation. That is, people explain causation in a particular event by trying to find
some sequence of (causally) intervening variables that had ‘causally active’ values

(in a token-causal sense) during the event. (I do not provide an extended defense of
this claim here, but only note that I am not the first to make this observation—see

Glymour, 1998.) In the causal Bayes net framework, this minimal theory translates
into (i) addition of variables—possibly intervening ones—to our Bayes nets as we
learn more about the world (see Danks, 2002 for a normative account of this

process), and (ii) application of one (or more) of the existing accounts of token
causation using causal Bayes nets. Hence, the framework of causal Bayes nets includes

the computational resources to incorporate mechanism theories.
Of course, as noted above, this ‘integration’ is quite programmatic, largely because

mechanism theories have typically not been quantitatively specified. Newsome
advocates the use of philosophical work on ‘mechanism’ to help refine the

psychological notion. For example, he suggests that people’s understanding of a
particular causal connection might initially be highly statistical (as in Salmon, 1984),
but then shift to the entity/activity-based notion of Machamer, Darden, & Craver

(2000) as they acquire more information about the various properties and processes
involved in the connection. Little is known about changes in the properties of

people’s causal beliefs (e.g. statistical vs. activity based) as they acquire more
information about a situation, and so this account may well be true. That being

said, although the psychological and philosophical theories use the same word,
the theoretical and experimental details are much more ambiguous about whether

they are talking about the same concept, or even the same family of concepts.
Consider just one example: Ahn et al.’s (1995, Experiment 1) result that people

ask mechanism, rather than covariation, questions when trying to determine why
some event occurred. Mechanism questions were picked out as those that (i) did not
ask about other events; (ii) referred to novel factors (i.e. not previously identified);

and (iii) could be viewed as a ‘stand-alone’ question. This criterion is clearly
quite broad and covers a range of questions, and not necessarily those meeting

some philosophical standard. The philosophical work on mechanism may prove
to be useful to psychologists, but we will not know without substantially more

research—both philosophical and psychological. Newsome also seems to advocate
this type of research.

Perhaps most importantly, causal Bayes net theories provide a straightforward
(though overly simplistic) way to think about a unification of the theory types:
covariation theories explain how people learn causal relations, and mechanism

theories explain how people apply causal relations. Covariation theories tell us how
people learn, from statistical associations and background assumptions, causal

relations that can be used both for prediction and for explanation in novel contexts.
Mechanism theories attempt to describe how people use causal beliefs for explanation

and prediction in particular cases. Mechanism theories assume that people have
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detailed prior beliefs about direct causes, causal intermediaries, generative versus

preventive causes, and so on. Covariation theories attempt to explain the learning
of exactly these sorts of beliefs. Covariation and mechanism theories are simply

attempting to answer different questions about the world (specifically, learning
vs. applying causal beliefs). And this distinction can be directly captured in the

causal Bayes net framework as the difference between learning the underlying
network structure (covariation theory) and performing various types of inference

on some fixed causal structure (mechanism theory). Of course, this way of thinking
about the issues is too simple: we can learn from mechanism information
(e.g. when one presumed mechanism is explained away based on knowledge about

other mechanisms), and we can apply covariation information (e.g. to obtain
quantitative estimates of the impact of various decisions). Nevertheless, this

description illustrates the ability of causal Bayes nets to explain both learning and
application of causal beliefs.

The causal Bayes net framework also provides theoretical resources that are not
clearly available in the other psychological theories. In particular, covariation theories

do not explicitly model the distinction between observation and intervention, either
in learning or prediction. That is, they assume that there is no difference between
observing a variable’s value and manipulating (i.e. forcing) the variable to have that

particular variable.3 The observation/intervention distinction can be introduced into
these theories, but only in a somewhat ad hoc manner. It is unclear just what

mechanism theories say about the observation/intervention distinction. In the causal
Bayes net framework, on the other hand, this distinction is made quite clear and the

different kinds of information can be differentially used in learning, prediction and
decision making. Recent psychological work (e.g. Lagnado & Sloman, in press;

Steyvers et al., 2003) has started investigated whether people seek out and use
intervention information as predicted in the causal Bayes net framework.

Viewing theories of human causal inference through this causal Bayes net lens
also helps to clarify the discussion in the second section about what the psychological
theories should be expected to explain. The causal Bayes net representation offers

no account of why variables are included or excluded. It assumes that there is some
well-defined set of variables (though it does not assume a potential cause/effect

labeling), and learning, updating and inference all take place on those variables.
Through the course of learning, we might discover that some variable in the set

is causally irrelevant to the problem at hand, but this learning does not explain why
the variable appeared in the set in the first place. We might naturally wonder

how we can (or should) include variables in a particular causal Bayes net, but this
question is—at least at present—outside of the framework itself (though Spirtes
and Scheines, 2004, point towards ways to postulate new variables). Thus, we should

not expect any psychological theory that uses this framework to offer a solution to
that problem. As noted earlier, Newsome simply expects too much of covariation

theories; however, if this unification is correct, he also thinks too highly of
mechanism theories, since he (mistakenly) believes that they have the resources to

solve the variable labeling problem.
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5. Conclusion

There are other minor points in the Newsome article about which one could
quibble or complain. For example, he divides the covariation theories into

associative and contingency models, without noting that some associative models
actually make identical asymptotic predictions to some contingency models.

The Rescorla–Wagner (1972) model, for example, is a quintessentially associative
model that, in many cases, makes the same long-run predictions as Cheng

and Novick’s (1990, 1992) probabilistic contrast model, which is a paradigmatic
contingency model (Cheng, 1997; Danks, 2003). A different associative model

makes the same long-run predictions as the contingency-based power PC theory
(Danks et al., 2003). There are certainly theoretical differences between associative

and contingency theories; in particular, the former explain case-by-case changes
in judgment, while the latter focus on asymptotic judgments. But the division
between them is not necessarily an either/or choice. In many cases, a given

associative theory does not conflict with a corresponding contingency theory, but
rather offers one process explanation (out of many possible ones) of how people

reach their long-term, stable, causal beliefs (as modeled by the contingency
theory).

Newsome also makes some comments that suggest he believes that covariation
theories assume that people explicitly calculate probabilities when trying to learn

causal relationships from data. For example, Newsome’s Table 1 states that ‘people’s
conceptions of causality’ are ‘the probabilit[ies] with which causes influence the
occurrence of the effect’ (p. 94). And he later states that ‘covariation theorists assume

that people use their understanding of these constraining relations to infer the
probability with which candidate causes produce or prevent target effects’ (p. 98).

Such claims are explicitly denied by covariation theorists. For example, Cheng (1997)
understands people to be making ordinal judgments (such as ‘A is a stronger cause

than B’) that we theorists idealize as point-valued probabilities. No extant covariation
theory requires that people be able to explicitly calculate probabilities, compute

differences, or normalize values.
These latter complaints are relatively minor. The deeper issue throughout

Newsome’s critical review is his framing of the issue as covariation versus
mechanism, when the real theoretical landscape is becoming ‘covariation some-
times and for some problems, mechanism sometimes and for some problems’.

The psychologist does not have to make an a priori choice between covaria-
tion and mechanism theories. The theory types attempt to explain different

phenomena and different modes of inference, and so can usefully be explained by a
single, unified, extant theory. There are many interesting, open problems in

psychological research on causal learning, but ‘covariation or mechanism?’ is a false
dilemma. In particular, we can potentially use the framework of causal Bayes nets to

unify covariation and mechanism theories in a clear framework that both raises novel
problems, and provides a deeper understanding of the relationship between the
two theory types.
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Notes

[1] Oddly, Newsome consistently refers to Cheng’s theory as the ‘PC power theory’.
[2] Unless otherwise indicated, this and all future page references are to Newsome (2003).
[3] This conflation is not as absurd as it might seem. If we know that C causes (or doesn’t

cause) E and there are no common causes of the two, then E has the same predicted value
given either an observation or manipulation of C. The extant covariation theories assume
(explicitly or implicitly) a particular causal structure in which the antecedent is satisfied.
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