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Abstract 

There are numerous routes for scientific discovery, many of which involve the use of 

information from other scientific theories. In particular, searching for possible 

reductions is widely recognized as one guiding principle for scientific discovery or 

innovation. However, reduction is only one kind of intertheoretic relation; scientific 

theories, claims, and proposals can be related in more, and more complex, ways. This 

chapter proposes that much scientific discovery proceeds through the use of 

constraints implied by those intertheoretic relationships. The resulting framework is 

significantly more general than the common reduction-centric focus. As a result, it 

can explain more prosaic, everyday cases of scientific discovery, as well as scientists’ 

opportunistic use of many different kinds of scientific information. I illustrate the 

framework using three case studies from cognitive science, and conclude by 

exploring the potential limits of analyses of scientific discovery via constraints. 

 

1. Routes to discovery 

The diverse paths and techniques for scientific discovery, invention, and construction form 

perhaps the most heterogeneous part of science. There are many ways and methods, whether 

structured or intuitive, to develop a novel scientific theory or concept. In fact, people have 

sometimes thought that scientific discovery does not—perhaps, could not—exhibit any systematic 
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patterns at all. While this latter pessimism is arguably unwarranted, the skeptics are correct that there 

is great diversity in routes to scientific discovery. At one extreme, a relatively minimal type of 

discovery occurs when the scientist starts with an existing theory, and then adjusts its parameters in 

light of new data. For example, a novel experiment might reveal the importance of a previously 

unconsidered causal factor. A more speculative type of scientific discovery depends on analogical 

reasoning, as that can lead the scientist to consider entirely new classes or types of theories. 

Alternately, various abductive or inductive strategies can point towards scientific theories, models, or 

concepts that have not previously been considered. And of course, there might be no explicit or 

conscious “method” at all in a case of scientific discovery; it might, from the perspective of the 

scientist herself, be the result of unexplainable inspiration. 

This paper explores a particular set of methods for scientific discovery—those that use 

constraints from other scientific theories. Scientific innovation and discovery is often driven by 

consideration of other (folk and scientific) theories and models, where the resulting constraints can be 

both structural and substantive. Past discussions of this constraint-based scientific discovery have 

almost always centered on reductionism or reductionist commitments as a discovery strategy 

(Bechtel & Richardson, 2000; Schouten & de Jong, 2012; Wimsatt, 1980). More specifically, there are 

two principal ways to use reductionism as a method for scientific discovery and innovation. First, 

suppose that one has a theory TH that captures the higher-level (in some relevant sense) phenomena 

or structure. Reductionism, as an overarching meta-scientific commitment, implies that there must 

be some lower-level theory TL—in fact, potentially many such theories if there are many lower 

levels—such that TH reduces to TL. (For the moment, I leave aside the question of the meaning of 

‘reduces to’.) Scientific discovery at the TL-level can thus be guided by our knowledge of TH: the 

higher-level theory can provide substantial information about features of TL (e.g., the relevant inputs 

and outputs), and thereby significantly reduce the possibility space. For example, the search for 
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underlying causal mechanisms is frequently guided in exactly this way by a higher-level theory about 

the structure of the system or the functional roles of various components (e.g., Darden, 2002; 

Darden & Craver, 2002). Of course, this use of reductionism does not eliminate the need for 

discovery; even though TH might reduce the space of possible TL’s, it will rarely uniquely determine 

one particular TL. Thus, we will still need to use one or more strategies from the previous paragraph, 

such as adjustment in light of novel data. Nonetheless, we can use reductionist commitments as a 

substantive “downward guide” to scientific discovery, and thereby greatly simplify the task. 

A second way to use reductionism as a discovery strategy starts with a lower-level TL that 

specifies particular components of the system (perhaps mechanisms in a strong sense, perhaps not). 

We can then seek to discover a TH that captures the functional roles or higher-level regularities and 

relations of the system, and that reduces to TL. For example, we might have a robust scientific 

theory about some set of regulatory mechanisms within a cell, and then aim to find a higher-level 

theory that captures the patterns that result from interactions of these mechanisms in particular 

environments. More generally, TH will typically incorporate elements of TL as particular realizations 

or implementation specifications of the TH-components. This lower-level information significantly 

constrains the possible functional, computational, or causal roles for elements of TH, precisely 

because we require that TH reduce to TL. Although TL might sometimes uniquely determine TH at 

some levels (e.g., if TH is the asymptotic behavior of dynamical model TL), the discovery situation 

will typically be more complex: the proper TH may depend on our explanatory goals, or specific 

initial conditions, or aspects of the background context. This second use of reductionism and 

reductionist commitments does not obviate the need for scientific discovery, but nonetheless 

provides guiding “upward constraints” that can significantly speed or improve that discovery. 

Regardless of which strategy we pursue, the exact constraints will depend on both the details of 

the scientific case, and also the particular account of ‘reduction’ that one employs. For example, 
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syntactic theories of ‘reduction’ (e.g., Dizadji-Bahmani, Frigg, & Hartmann, 2010; Nagel, 1961) will 

emphasize discovery through manipulations of the symbolic representations of the theories. In 

contrast, causal theories of ‘reduction’ (e.g., Churchland, 1985; Hooker, 1981a, 1981b) will focus on 

discovery of similar causal roles or capacities across the theories. However, all theories of ‘reduction’ 

agree that the relevant relation involves a very close connection between the two theories. Thus, 

scientific discovery via reductionism inevitably results in a new scientific theory that is tightly 

coupled with the pre-existing theory—either discovery of a TH that reduces to the existing TL, or 

discovery of a TL to which the existing TH can reduce. This tight connection between old and new 

theories provides much of the power of reductionism as a discovery strategy (when it is successful). 

For a given TH, there will often be a relatively small class of lower-level realizations or 

implementations that actually exhibit the precise higher-level phenomena. For a given TL, 

information about the relevant initial or background conditions will often almost determine the 

higher-level TH. And we gain enormous further benefits if we can discover a suitable <TH, TL> pair, 

as we can use each to refine the other, combine them into integrated multi-level models, and thereby 

establish cross-level, cross-theory, and cross-disciplinary connections.  

However, although there can be significant benefits from requiring a reductionist connection 

between TH and TL (regardless of direction of discovery), such a connection comes with a significant 

cost: the required tight couplings are usually very difficult to establish. First, all extant theories of 

‘reduction’ require that both TH and TL be full scientific theories, even though scientists frequently 

work with vaguer or more uncertain not-quite-theories (e.g., observation of a correlation between 

two factors, or knowledge that some manipulation produces a probabilistic change in a target 

variable). Second, reductionist discovery must involve levels that are an appropriate distance from 

one another, as reductions are very hard to establish across large “level gaps.” Third, the 

requirements for a full reduction are often quite stringent, and so we might not be able to establish 
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the appropriate connections between TH and TL (though searching for those connections could 

potentially be useful for discovery purposes). Fourth, for a given TL, there might simply not be an 

appropriate TH at our desired level, as we might not be able to abstract away or modularize the 

implementation details in TL. Fifth, for a given TH, the relevant distinctions or objects might not be 

respected in TL (e.g., cognitive symbols might not be directly found in neural models), and so TH 

could actually be a misleading guide for scientific discovery.  

Reductionism and reductionist commitments are very powerful guides for scientific discovery, 

but also very limited. If we look more broadly, we can find many cases in which information from 

other scientific theories has been used for scientific discovery, but where those uses simply cannot 

be understood in terms of the search for reductions. Reduction is, however, only one intertheoretic 

relation of many, and so we might suspect that scientific discovery via reductionist commitments is 

only one way to employ information other scientific theories. Perhaps we can have a more general, 

more useful model of scientific discover by considering alternative intertheoretic relations. This 

chapter aims to provide such an account via the use of intertheoretic constraints generated by those 

relations; reductive constraints are simply one special case. To that end, Section 2 provides a more 

general account of the notion of ‘intertheoretic constraint’, with a particular eye towards their use in 

discovery. Section 3 then uses that account to explicate several cases of scientific discovery in the 

cognitive sciences. Those case studies might well seem banal and ordinary, but that is part of the 

point: everyday scientific discovery is largely a matter of trying to fit together disparate puzzle pieces, 

and scientists employ many different constraints and relations—not just reduction—to find the next 

piece of the puzzle. 

 

2. Discovery via constraints 
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There are many different intertheoretic relations, involving multiple theoretical virtues. 

Reduction is one salient relation, and it holds when there is a tight coupling—syntactic, semantic, 

causal, functional, or other—between two theories. Autonomy is a different intertheoretic relation 

that obtains when features of theory TA are essentially independent of TB. For example, 

macroeconomics is thought to be explanatorily autonomous from quantum mechanics. More 

controversially, psychology has been claimed to be ontologically autonomous from neuroscience 

(Fodor, 1974, 1997). These two relations of reduction and autonomy clearly fall at the extremes; 

theories can be related to one another in more subtle and fine-grained ways, as we will see in Section 

3. Importantly, these intertheoretic relations imply intertheoretic constraints (thlough perhaps an 

empty set of constraints, as in the case of autonomy). For example, if TH reduces to TL, then if TL is 

true, then TH must also be true.1 Moreover, this constraint (or its contrapositive: given a reduction, if 

TH is false, then TL must be false) does much of the work when reductionism is used as a guide for 

scientific discovery, which suggests that perhaps much scientific discovery proceeds through the use 

of intertheoretic constraints of all sorts, not just those grounded in reductions.  

A general account of intertheoretic constraints should include reduction and autonomy as special 

case intertheoretic relations, but should also apply more generally, though that requires some 

complications.2 At its most abstract, a scientific theory S (or model, or claim, or…) constrains another 

theory T relative to some theoretical virtue V just when the extent to which S has V is relevant in 

some way to the extent to which T has V. That is, an intertheoretic constraint exists between S and 

T if S’s status with respect to V (e.g., truth, simplicity, predictive accuracy, explanatory power, etc.) 

matters in some way for T’s status with respect to the same V. For example, the existence of a 

reduction relation between TH and TL yields (at least, on most accounts of ‘reduction’) the constraint 

                                                
1 Readers who are skeptical about notions of ‘truth’ with regards to scientific theories should instead substitute ‘accurate’ 
or ‘approximately true’ or whatever notion they prefer. 
2 For space reasons, I only summarize my account of intertheoretic constraints here. More details and discussion can be 
found in chapter 2 of Danks, 2014, or Danks, 2013. 
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that TL’s truth implies TH’s truth. That is, the truth of TL is directly relevant to whether TH is true. 

Crucially, though, a reduction implies this tight constraint only for some theoretical virtues (e.g., 

truth). The existence of a reduction relation does not, for example, necessarily imply any constraint 

with respect to explanatory power, as TH could reduce to TL but provide explanations with different 

scope and generalizability. Moreover, although I have been using the word ‘theory’ in this paragraph, 

this account of ‘constraint’ does not actually require S and T to be full-blown theories. Relevance 

can arise between scientific claims, data descriptions, partially specified models, and other kinds of 

not-quite-theories, and thus constraints based in those intertheoretic relevance relations can obtain 

between them. Of course, the specific relation underlying particular constraints could have more 

stringent requirements of the relata (e.g., a reduction requires theories), but that is not intrinsic to 

intertheoretic constraints more generally. 

This high-level characterization of ‘intertheoretic constraint’ is qualitative and vague in certain 

key respects (e.g., what does it mean for S’s theoretical virtues to be “relevant” to T’s virtues?), but is 

already sufficiently precise to highlight some notable features (see also Danks, 2014). Perhaps most 

importantly, this account implies that constraints are objective, not subjective: the constraint obtains 

if S is actually relevant for T, regardless of whether any scientists realize that it is relevant. In fact, a 

common scientific activity is the discovery of novel intertheoretic relations and constraints that were 

previously unknown (but were present all along). A less-obvious implication is that constraints are, 

on this account, comparative in both relata: whether S constrains T with respect to V depends not 

only on S and T themselves (and their relations), but also on the alternatives to S and T. This 

property of constraints might be surprising, but follows immediately from the focus on relevance, as 

whether one theory or model is relevant to another will depend on what we take to be the serious 

alternatives. For example, suppose that T is a particular associationist model of human 

(psychological) causal learning that uses prediction errors in learning (e.g., Rescorla & Wagner, 1972), 
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and S is neural evidence that prediction errors are computed in the brain. Is S relevant for whether T 

is the correct theory? If the only alternatives to T are other models that use prediction errors (e.g., 

other standard associationist models, such as Pearce, 1987), then the answer is “no,” as S does not 

provide information that distinguishes between them. However, if the alternatives to T include 

models that do not directly employ prediction errors (e.g., more rationalist models, such as Griffiths 

& Tenenbaum, 2005), then the answer is potentially “yes,” as S might rule out (or make less 

plausible) some of these alternatives to T. More generally, relevance (of all different types) can 

depend on what else might have been the case, and so the alternatives to S and T matter.3 

The use of these intertheoretic constraints in scientific discovery is relatively direct and 

immediate. Suppose that I am trying to discover a new scientific theory, model, or other account of 

phenomena P (in domain D and at level L) for purposes or goals G. For this discovery task, the first 

step is to list possibly-relevant theories and models S1, …, Sn (and their corresponding sets of 

competitors S1, …, Sn). These S’s are my scientific beliefs and knowledge that could perhaps imply 

constraints that are relevant to our theory of P (at level L for goal G). They might be about other 

phenomena in D, or characterized at a different level, or offered to fulfill a different function, but 

still potentially related. I almost presumably have some ideas about what kind of theory or model is 

desired, even if only a vague sense. That is, we can assume that I have some set T of possible 

“targets,” where T will frequently be infinite, or involve a number of unknown parameters, or 

otherwise be very broad.  

Given these components, the use of intertheoretic constraints for scientific discovery is 

straightforward, at least in the abstract: (a) for each Si/Si, we determine the G-constraints (i.e., the 

constraints that are relevant for the scientific goal) that they imply for T; (b) aggregate the G-

                                                
3 As an aside, notice that this alternative-dependence implies that the particular constraints that scientists entertain can 
depend on contingent historical facts about the science (that influence the set of alternatives considered), even though 
the existence and nature of those constraints are not history-dependent. 
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constraints together, perhaps deriving further implied constraints; and (c) compute the resulting 

impacts on T (e.g., ruling out certain possibilities, or making others more likely). In some special 

cases, this process will result in only one Tj at the end, in which case the constraints were fully 

sufficient for our discovery problem. More typically, this process will reduce the possibility space, 

but not fully determine T. We can then look for additional S’s (since it will not always be obvious a 

priori which scientific beliefs are potentially relevant), or try to discover additional constraints implied 

by the current S’s (since we cannot use a constraint if we do not know about it), or turn to one of 

the other types of discovery strategy outlined at the beginning of this chapter (e.g., collecting novel 

data to further refine or specify the scientific theory or claim).  

Scientific discovery via reductionism can easily be understood in terms of this schema. Consider 

the “bottom-up” strategy in which we know TL and are trying to discover TH. In this case, TL largely 

sets the domain and phenomena, and other factors (perhaps extra-scientific) determine the level and 

set of possible target TH’s. This discovery problem is truth-centric,4 and so we are concerned with 

truth-constraints: given that TL is true, how does this constrain the possible truth of elements of TH? 

The notion of a truth-constraint is significantly more complicated than one might initially suspect 

(see Danks, 2014 for details), but it is relatively simple if we require that the target TH be reducible to 

TL: any candidate TH that is inconsistent with TL in the relevant domain can be eliminated. That is, 

we get exactly the constraint that is used by reductionists in scientific discovery. And a similar 

analysis can be given for “top-down” reductionist discovery in which we know TH and are trying to 

discover TL. Thus, the much-discussed reductionist strategies are simply special cases of this more 

general account of the use of intertheoretic constraints for scientific discovery. 

This picture of “scientific discovery via intertheoretic constraints” is similar to, but (at least) 

generalizes and extends, the constraint-inclusion model of scientific problem-solving (Nickles, 1978, 

                                                
4 Again, readers should freely substitute their preferred term for ‘truth’, such as ‘accuracy’ or ‘approximate truth’. 
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1981). The constraint-inclusion framework for scientific discovery (and confirmation) contends that 

scientific problems, not theories, are the relevant units of inquiry, and that the goal of inquiry is a 

satisfactory answer, not truth (Laudan, 1981; Nickles, 1988). “Constraints” then provide critical 

information about what would count as a satisfactory answer to a problem: any such answer must 

satisfy the relevant constraints (Nickles 1978). Scientific problems are not defined by constraints, but 

they form a major part of the characterization of problems, and provide one way to gain 

understanding about the structure of a scientific problem. As Nickles (1981) puts it: “The more 

constraints on the problem solution we know, and the more sharply they are formulated, the more 

sharply and completely we can formulate the problem, and the better we understand it.” (p. 88) 

There are several shared features of the constraint-inclusion model and the framework proposed 

in this section: (a) problems, questions, and goals are central, not simple truth; (b) constraints play an 

important role in the scientific discovery process; and (c) the existence of constraints does not 

depend on contingent scientific history or human psychology, though our awareness of them might 

depend on these factors. At the same time, though, we employ somewhat different understandings 

of ‘constraint’. Most notably, the constraint-inclusion model focuses on relatively “hard” or quasi-

logical constraints, where these are derived for a particular problem. For example, a “reductive” 

constraint C on problem solutions specifies that the solution (whatever it may be) must be re-

representable as specified by C (Nickles, 1978); this type of constraint thus focuses on the 

mathematical relations between syntactically characterized scientific theories. Of course, there are 

many kinds of constraints in the constraint-inclusion model, but in general, “every single constraint, 

by definition of 'constraint', rules out some conceivable solution as inadmissible.” (Nickles, 1981, p. 

109; emphasis in original) In contrast, my constraints need only influence plausibility without 

definitively ruling anything in or out. A constraint can be useful even if nothing is inadmissible as a 

result of it. In addition, my account does not identify constraints with problems, but rather provides 
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an account of how they arise from intertheoretic relations. The “discovery via constraints” model 

proposed here thus generalizes the constraint-inclusion model by allowing for “soft” constraints, 

and also provides an account of the source of problem-specific constraints in terms of the 

potentially relevant theories (and their intertheoretic relations). 

Of course, one might object that my account is too high-level and abstract to be useful, precisely 

because it attempts to cover a wide range of cases and constraints. In general, there is only a limited 

amount that can be said if we restrict ourselves to talking in terms of letters—D’s, G’s, S’s, and so 

forth—rather than specific domains, phenomena, and discovery problems. For example, we need to 

know the relevant goal(s), as the very same S might truth-constrain T, but not explanation-constrain 

T. Thus, the trajectory of scientific discovery for one goal can be quite different than for another 

goal.5 The details make a critical difference, and it is hard to evaluate this account without 

considering its applicability to particular cases of scientific discovery, and so we now examine some 

particular instances of scientific discovery.  

 

3. Case studies of constraint-driven discovery 

This section considers three case studies from cognitive science, each of which shows an 

instance of constraint-based scientific discovery, and that collectively show how scientific discovery 

can be an iterative process in which the outputs of one episode can be the inputs or constraints of 

the next. Although all three examples are drawn from cognitive science, I suggest that the lessons 

apply across many scientific disciplines. I focus on these examples only because I know them best, 

not because there is anything special or distinctive about them (at least, with respect to the use of 

intertheoretic constraints for discovery). In fact, as noted earlier, these case studies should hopefully 

                                                
5 This goal-dependence does not necessarily imply some sort of goal-dependent pragmatism or perspectivism (though I 
do also endorse that; see, e.g., Danks, 2015). Rather, this dependence is just a generalization of the old reductionist 
observation that two theories could stand in a reduction relation without thereby constraining one another’s 
explanations in any interesting or informative way (e.g., Putnam, 1975). 
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seem somewhat anodyne, as one claim of this chapter is that “discovery via constraints” is a 

completely normal and regular scientific activity. 

 

3.1. Representations of causal knowledge 

People have a great deal of causal knowledge about the world: we know which switches cause 

the lights to turn on; we know ways to alleviate pain; we might understand the causes of the 

functioning of a car engine; and so on. Causal knowledge is arguably one of the key guides 

throughout our cognition (Sloman, 2005), and the first case study focuses on this phenomenon P of 

causal knowledge, within the domain D and level L of cognitive psychology/science. In particular, 

consider the discovery problem of finding a theory (or not-quite-theory) T that describes the 

structure of these cognitive representations. There are many different plausible candidate theories, as 

our causal knowledge might be structured as: lists of pairwise associations (e.g., Shanks, 1995); 

stimulus → response or environment → action mappings (e.g., Timberlake, 2001); causal graphical 

models (e.g., Danks, 2014; Griffiths & Tenenbaum, 2005); or in some other way.6 

The first step in scientific discovery via constraints is to provide the different Si/Si¾that is, the 

potentially relevant scientific claims or theories, as well as their relevant, plausible alternatives. For 

the particular phenomenon of causal knowledge, there are an enormous number of potentially 

relevant scientific claims; for simplicity, we consider only two. First, there is substantial empirical 

evidence that people understand (perhaps implicitly) many of their actions as having a relatively 

uncaused (i.e., self-generated) component (Hagmayer & Sloman, 2009), and this emerges at a very 

young age (Rovee & Rovee, 1969). This understanding is arguably part of the reason that we have 

experiences of free will: we see our actions as not caused solely by the environment around us, but 

rather attribute some of the causation to ourselves. There are many alternatives to this claim S1 (i.e., 
                                                
6 As a matter of historical interest, these were the three main types of theories of causal structure representation being 
proposed in cognitive science in the early 2000’s. 
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other members of S1); for example, people might understand their choices as entirely determined by 

environmental conditions, or by their own prior cognitive or emotional state.  

A second, potentially relevant scientific claim S2 is that people’s decisions are appropriately 

responsive to indirect information about the state of the world. Obviously, we adjust our decisions 

so that they are appropriately tuned to the world. The relevant feature of human decision-making 

here is that we can use information that is not immediately relevant in order to make inferences 

about those factors that are directly relevant. For example, I might not bother to flip a light switch if 

I see my neighbor’s lights are off, as I might thereby infer that the power is out in my neighborhood. 

That is, we employ disparate pieces of information to shape our decisions in order to maximize our 

chances of achieving a desired outcome. Alternative scientific possibilities to this S2 are that people’s 

decisions might depend only on local or immediate factors, or even be truly random in important 

ways.  

Now consider the scientific discovery problem of the nature of our cognitive representations of 

causal structure. If S1 holds (rather than some other possibility in S1), then our representations must 

enable us to derive predictions of the outcomes of exogenous actions. In particular, the 

representations should honor the basic asymmetry of intervention for causal relations (Hausman, 

1998): exogenous actions to change the cause C (probabilistically) change the effect E, but 

exogenous changes in E do not lead to changes in C. Thus, our cognitive representations cannot be 

composed solely of lists of associations, as those are symmetric in nature. On the other side, if S2 

holds, then our representations of causal structure must be relatively integrated or unified, since we 

can use disparate pieces of information to shape or constrain our choices. Thus, they cannot consist 

solely in environment → action mappings, as those are not “tunable” in the appropriate way.7 If we 

                                                
7 One might object that they could be tunable, if we understood “environment” in an appropriately broad and rich way. 
The problem is that this move then makes the mappings essentially unlearnable, as every experience now involves a 
unique, never-before-seen environment. 
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think back to our original set T of possibilities, we find that only causal graphical models can satisfy 

the constraints implied by both S1 and S2. And as a matter of historical fact, causal graphical models 

are currently the dominant theory of cognitive representations of causal structure knowledge, in 

large part because they are the only representations that can explain diverse reasoning, inference, and 

decision-making abilities such as S1 and S2 (Danks, 2014). 

In this case study, scientific discovery occurred partly through understanding how our prior 

scientific commitments and beliefs constrained the possibilities. We did not need to perform a new 

experiment, or engage in analogical reasoning. More importantly for this chapter, the process looks 

nothing like “discovery via reduction.” There is simply no possibility of a reduction relation between 

“causal representations are structured as causal graphical models” and either S1 or S2. None of these 

claims rise to the level of a full-fledged theory (as required for a reduction). More importantly, these 

not-quite-theories are not accounts of the same phenomena at different levels, and so a reduction 

would simply be inappropriate. In order to make sense of this example, we need to see scientific 

discovery about P (= the structure of our causal knowledge) as shaped and informed by other 

scientific claims that are relevant because they impose constraints, not because they are involved in a 

reduction. 

 

3.2. Concepts based on causal structure 

For the second case study, we turn to the phenomenon of conceptual representation in our 

cognitive psychology: that is, we plausibly want to discover the structure of our everyday concepts, 

such as DOG, STUDENT, or APPLE, though with the recognition that there might be multiple types 

of concepts depending on the particular domain or even individual (e.g., Barsalou, 2008; Machery, 

2009). Many different theories of conceptual structure have been proposed over the years (Murphy, 

2004), and so we have a rich set T of theoretical possibilities, and a correspondingly difficult 



 15 

scientific discovery problem. One natural S1 is the empirical finding that people frequently (and 

often spontaneously) group together different individuals on the basis of their shared or similar 

causal structure (Carey, 1985; Keil, 1989). The contrast class S1 here includes, for example, the claim 

that perceptual similarity always determines grouping. And given this S1, we can sensibly include S2 

about causal structure: namely, people’s representations of causal knowledge are structured like 

causal graphical models. These S1 and S2 constrain the space of theories of conceptual 

representations: at least some of our concepts are (likely) structured as causal graphical models 

(Rehder, 2003a, 2003b). Moreover, S1 provides us with a relatively precise characterization of when 

our concepts will have that structure. 

One might object that this example is not really a case of scientific discovery, but rather is 

“simple” scientific reasoning. However, this characterization is overly simplistic and dismissive. As 

an historical matter, the story that I provided in the previous paragraph largely captures the scientific 

history: causal graphical models were only proposed as a possible model of some concepts once 

people combined the information in S1 and S2. The causal model theory of concepts was 

“discovered” largely by thinking through the implications of these constraints. More generally, this 

objection assumes a sharp distinction between scientific reasoning and scientific discovery, but part 

of the point of these case studies is precisely that there is no bright line to be drawn. Scientific 

practice partly consists in trying to put various pieces together into a relatively integrated account. 

That integration can involve both discovery (e.g., proposing an entirely new theory of conceptual 

representation in terms of causal graphical models) and reasoning (e.g., showing the relevance of 

empirical findings that are not directly about the nature of conceptual representations). 

This case study also demonstrates the dynamic nature of these processes in two different ways. 

First, notice that S2 here is T from the previous case study. The product of some scientific discovery 

will itself usually imply constraints on other T’s, though those might not immediately be recognized 
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by the scientists. These connections provide one way in which a single empirical finding can have 

wide-ranging “ripple effects”: the impact of an empirical finding is not necessarily limited to the 

immediately relevant scientific question or problem, as the answer to that question can imply 

constraints that help answer a second question, which can thereby imply constraints for a third 

question, and so on.8 Second, this “discovery via constraints” is dynamic in nature because it leads to 

a new theory with novel empirical predictions that can subsequently be tested and explored (e.g., 

Hadjichristidis, Sloman, Stevenson, & Over, 2004; Rehder, 2009; Rehder & Kim, 2010). And those 

experiments and observations provide additional, novel Si claims that further constrain our theory of 

conceptual representations, either in detailed structure or in the scope of a particular theory. 

Scientific discovery and reasoning do not proceed in a discrete, staged manner, but rather involve a 

complex dynamic between using constraints to develop new theoretical ideas, and using ideas to find 

novel constraints. 

 

3.3. Goals and learning 

The third case study looks a bit more like a case of “traditional” scientific discovery than the 

prior two. Consider the general question of the role of goals¾more generally, beliefs about future 

tasks¾on what and how we learn from the environment. Arguably, almost all major theories of 

(high-level) learning in cognitive psychology assume that goal or future task information only 

influence the domain from which we learn, but do not further influence the method or dynamics of 

learning. For example, essentially all theories of concept learning assume that I have domain 

knowledge about which features are potentially relevant to the new concept, but that the goal and 

(beliefs about) future tasks do not otherwise influence my concept learning. That is, given the same 

                                                
8 A framework for characterizing and modeling this dynamics represents another extension of the constrain-inclusion 
model of Laudan, Nickles, and others. 
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domain and same stimuli, learning is (on all of these theories) predicted to have the same dynamics. 

However, this dominant assumption has been called into question, and a new theory was discovered 

or proposed, in large measure by considering constraints implied by other scientific commitments. 

The first theoretical claim S1 that is potentially relevant to this problem is that much of our 

learning depends partly on attention. If we do not attend to a factor, then we typically learn less 

about it (e.g., Desimone & Duncan, 1995; Huang & Pashler, 2007), though some learning can occur 

even when we do not consciously attend to the items (DeSchepper & Treisman, 1996). We do not 

need to make any particularly strong theoretical commitments about the nature of attention here. 

Rather, S1 simply expresses the fact that attention and learning are sometimes closely connected. The 

relevant contrast class S1 here includes the possibilities that attention does not directly modulate 

learning, or that attention is merely a necessary condition for learning (i.e., a “gate” on learning) 

rather than influencing it in a more nuanced fashion.  

The second theoretical claim S2 is that attention allocation depends partly on one’s current task 

or goal. That is, my current task influences the particular way that I allocate my attention across my 

perceptual or cognitive field. For example, the current task or goal helps to determine which 

dimensions of objects are salient, and so which dimensions or objects are subsequently ignored as I 

perform that task (Maruff, Danckert, Camplin, & Currie, 1999; Tipper, Weaver, & Houghton, 1994). 

More colloquially, people pay much less attention to things that do not matter for their tasks, though 

they do not necessarily completely ignore those features of the stimuli or environment. As with S1, 

this claim is likely not particularly surprising or controversial, though the human mind could have 

functioned differently (e.g., selection of task-relevant factors might have involved only cognitive 

mechanisms, rather than lower-level attentional processes). 

Both S1 and S2 are widely (though not universally) endorsed in cognitive psychology, and both 

imply constraints on whether goals might influence the dynamics of learning. For concreteness, 
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consider only two theoretical claims in T: (a) “goals only determine domain of learning input,” 

labeled Tcurrent since it is the assumption of most current learning theories; and (b) “goals influence 

learning dynamics,” labeled Tnew since it is a novel theory (in this domain). Now consider the 

constraints implied by S1 and S2 for the two possible, though different, tasks of “learning for goal A” 

or “learning for goal B” (e.g., “learning to predict a system’s behavior” vs. “learning to control a 

system’s behavior”). By S2, we should expect differential attention allocation; by S1, we should 

expect this differential attention to translate into differential learning. That is, S1 and S2 jointly raise 

the plausibility of Tnew and decrease the plausibility of Tcurrent, even though none of these theoretical 

claims stands in any particular reductive relation with one another. Their intertheoretic relationships 

are more complicated, but equally able to support scientific discovery. In fact, this case study was 

historically a true case of discovery: although the analysis here evaluates Tnew and Tcurrent as 

contemporaneous competitors, Tnew was originally invented and proposed (in Danks, 2014) only after 

recognizing that the constraints implied by S1 and S2 were in significant tension with Tcurrent, and so a 

new theory was needed. Moreover, subsequent experimental results spoke strongly in favor of Tnew 

(Wellen & Danks, 2014; see also Hagmayer, et al., 2010).  

In sum, these three case studies provide three different ways in which intertheoretic constraints 

can be used to suggest or “discover” new scientific ideas. In contrast with “discovery via reduction,” 

this account in terms of “discovery via constraints” can explain how disparate theories, as well as 

claims and other not-quite-theories, can inform and guide our scientific investigations. One might be 

concerned by the relatively prosaic and banal nature of these case studies, as we often think about 

scientific discovery as something grand or transformative. However, scientific discovery is also an 

everyday phenomenon, as particular scientists discover novel ways to synthesize or unify disparate 

scientific pieces. This type of everyday scientific thinking requires explanation and clarification just 

as much as the grand discoveries of Newton, Einstein, or others. And while reduction might 
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sometimes be the basis of everyday scientific discovery, the more typical case is to use 

multidimensional intertheoretic constraints in order to add new pieces to our scientific puzzles. 

 

4. Constraints all the way up? 

The previous section focused on small-scale cases of scientific discovery via constraints, largely 

to provide enough detail to help demonstrate the mechanics of the framework. These smaller cases 

also clearly demonstrate that constraints are doing the relevant work, rather than full-blooded 

reductions. At the same time, one might wonder whether the “discovery via constraints” approach 

might be useful for understanding much larger-scale scientific discovery.9 So, I close with some 

speculative thoughts about whether even scientific “revolutions” (using the term in a very broad 

way) could be understood in terms of discovery via constraints. At first glance, it is not obvious how 

constraints might be playing a role, particularly given the many stories about the crucial role of 

creativity in inventing or discovering scientific theories with wide scope. These stories highlight the 

role of T as a “free parameter” in the present account: I provided no explanation or account about 

how or why particular theoretical possibilities are included in T, even though discovery is (in a 

certain sense) limited to the elements of that set, and creativity or intuitive insight might be one way 

to generate elements of T. On the “discovery via constraints” view, creativity in theoretical 

innovation can thus have a very large impact, even though it is not directly modeled or explained.10 

We can only consider the impact of various constraints on a theoretical idea if we recognize the idea 

as possible or worth considering, and imagination or creativity might help explain why some 

possibility is included in T.  
                                                
9 Thanks to Donald Gillies for encouraging me to consider this possibility, even after I had initially dismissed it. 
10 That being said, creativity could perhaps be modeled as discovery via constraints in the following way: suppose 
creativity results, as some have suggested (e.g., Simonton, 1999), from profligate, unguided idea generation, followed by 
thoughtful pruning of the outputs. This pruning process could potentially be based on the use of constraints, and so we 
have the beginnings of a picture in which all discovery is based on constraints. Of course, this proposal does not explain 
the “idea generator,” and much more work would need to be done before we have a full story in terms of constraints. 
Nonetheless, it is suggestive that even the “singular creative act” might be captured by this framework. 
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In many cases of scientific revolutions, this creative innovation is an important part of the 

overall story, but a single creative act is almost never the full story of any scientific revolution. 

Constraints arguably play a large role in the dynamics of scientific change that can result after the 

initial innovation. In many scientific “revolutions,” there is a significant initial shift in approach or 

“paradigm” (again, using the terms broadly) that is followed by significant work to put the empirical 

and theoretical pieces back together inside the new framework. The initial creative idea alone 

typically predicts and explains many fewer phenomena than were captured using the prior scientific 

theory and paradigm. Completion of the scientific revolution thus depends on finding auxiliary 

theories, background conditions, special cases, and other additional theories and not-quite-theories 

that generate explanations and predictions. Discovery via constraints will frequently play a significant 

role in these discoveries: these additional scientific elements can be discovered by trying to integrate 

constraints from the initial innovation, as well as constraints from prior empirical data and other 

posits that “survive” the revolution. For example, the Copernican revolution that shifted astronomy 

to a heliocentric view of the solar system started with a creative innovation, but then required 

substantial work to determine the appropriate constants, parameters, structures, and so forth. A 

dichotomy is sometimes drawn between periods of “revolutionary” and “normal” science, but a 

scientific revolution typically requires many steps of normal science along the way, and those can all 

(I argue) be fruitfully understood in terms of discovery via constraints. Discovery via constraints 

might (or might not) help us understand creativity or true innovation, but much of the rest of the 

process of large-scale scientific change can potentially be helpfully modeled as discovery via 

constraints. 

In general, the process of scientific discovery often employs constraints from other scientific 

ideas, claims, theories, and not-quite-theories. These constraints result from the complex, 

multidimensional intertheoretic relationships that obtain between these pieces and the to-be-
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discovered scientific claim. Reduction is one salient intertheoretic relationship, and a source of 

particularly powerful constraints when it obtains. The corresponding “discovery via reduction” can 

thus also be particularly powerful, but only when the reduction relation obtains. In actual scientific 

practice, and particularly in everyday science, reductions are rarely forthcoming. Instead, scientific 

discovery proceeds through the opportunistic use of less powerful, but more widespread, constraints 

grounded in weaker intertheoretic relationships. “Scientific discovery via intertheoretic constraints” 

includes “discovery via reduction” as a special case. More importantly, it provides us with a richer, 

more nuanced understanding of some ways in which scientists develop novel ideas and theories. 
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