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Introduction 

Rational analyses provide explanatory models of cognition, and I focus here on the nature 

of that explanation. I argue first that many⎯and perhaps even most⎯rational analyses fail to 

meet the evidential standards required to provide genuine explanations of the sort commonly 

attributed to them. Put simply, rational analyses (or at least, the actual instances that we usually 

have) are not as powerful as is normally thought. Second, I argue that there should nonetheless 

be an expansion of rational analysis to domains that have been thought off-limits. That is, 

rational analyses can be much more useful than is normally thought. In sum, this chapter argues 

for a shift in the practice of rational analysis to more widespread application, but with more 

careful consideration of their actual power. Rational analyses are an important tool that should be 

used more widely, but with more care about what they actually yield. 

A platitude about the sciences is that they are partly (or primarily) in the business of 

providing explanations. Predictions and data summaries are important and practically useful, but 

we expect our best scientific theories to tell us something about why some phenomenon 

occurred. The cognitive sciences are no different in this regard: we want an explanation for 

people’s behavior, not just a prediction or retrodiction of it. Rational analyses purport to offer a 

different type of explanation from that normally found in cognitive science, since the explanation 

is supposed to be agnostic about underlying cognitive mechanisms. The implication, as I will 

argue in the second section, is that many current rational analyses are “simple” instrumentalist 

theories: they offer data summaries and potentially predictions, but essentially no additional 

explanatory power.  

Instrumentalist theories are not necessarily to be avoided in all cases. I argue in the third 

section that there are conditions in which instrumentalist theories⎯and rational analyses in 



particular⎯can be valuable, but that we should not be content with such theories. A constant 

goal (perhaps suspended for a particular project, but still remaining in the background) should be 

to determine the cognitive mechanisms that underlie particular rational analyses. Understanding 

this goal requires an understanding of the nature of ‘implementation,’ and so I turn (in the fourth 

section) to develop an account of that notion. The proposed model of ‘implementation’ provides 

a better understanding of the nature of levels of description, in particular for cognitive 

mechanisms. I argue that the standard trichotomy of levels of description, due to David Marr, is 

thus too coarse-grained. More importantly, the present analysis implies that the use of rational 

analyses is entirely orthogonal to the level of description for a theory. The level of description 

dictates a particular level of realist commitment to theoretical elements, while rational analysis is 

a tool by which to develop the theories. No close connection between rational analyses and a 

particular level of description is warranted, and so rational analyses can (and should) be used 

much more widely than they currently are. 

Rational Analyses and Explanations 

The fundamental idea behind a rational analysis is the intuition that people are 

behaviorally well-adapted to their environments (Anderson, 1990, 1991a; Chater & Oaksford, 

2000; Oaksford & Chater, 1998). More specifically, rational analyses understand ‘rational’ to be 

a relation that holds just when there is an appropriate connection between four complicated 

variables: (i) the relevant environment; (ii) the task or problem to be solved; (iii) the agent’s 

capacities; and (iv) the agent’s input and output (typically, but not necessarily, perception and 

behavior). In particular, ‘rational’ is taken to mean: “the agent’s input/output are optimal1 for 

solving the task in this environment, given the agent’s capacities.” A rational analysis consists of 

                                                
1 The cost function for evaluating optimality is typically specified as part of element (ii), the 
problem to be solved. 



specifying any three of these elements, and then deriving the value for the fourth that completes 

the relation of rationality. In practice, the most common rational analysis specifies the first three 

elements and then derives the optimal input-output function. That is, one determines the optimal 

behavior to solve some task given the environment, input, and agent capacities, and then 

typically aims to confirm that model using various empirical data. Although less common, there 

are three other species of rational analysis that correspond to specifying a different subset of 

variables. For example, in order to determine why people exhibit some particular behavior, one 

might carry out a rational analysis in which the problem is the free variable: that is, one could 

determine the task for which some given behavior would be optimal (given the environment and 

agent). The type of rational analysis determines what factor is being explained, and which other 

three factors must be independently specified (see also Sloman & Fernbach, this volume). 

Rational analyses aim to provide explanations for behavior, and they typically make no 

commitments about the underlying implementing mechanisms. One of the central benefits of a 

rational analysis is that⎯when done fully and correctly (see below)⎯it is capable of supporting 

a particular type of explanation about behavior: namely, one that answers questions such as “why 

is this behavior optimal?”2 Optimality-based explanations give a reason for why the world has 

certain features, rather than simply asserting that those features exist, and are therefore often 

thought to provide superior, or more “normative,” explanations than ones that do not appeal to 

optimality. If we can give an optimality-based explanation for some behavior, then the behavior 

is not simply an accident, and so, for example, we can infer that it would be likely to arise, even 

                                                
2 There is (almost) philosophical consensus that all explanations are answers to why-questions, 
but a long history of debate about exactly what constitutes a satisfactory explanation 
(Bromberger, 1993; Halonen & Hintikka, 2005; Hempel, 1965; Salmon, 1984, 1989; van 
Fraassen, 1980). Even for superficially simple why-questions, such as “why does behavior X 
occur?”, there are many different types of responses that could provide an answer. 



if the world were different in certain ways. Much of the discussion about optimality-based 

explanations⎯particularly in the philosophy of biology⎯has focused on exactly what standards 

must be met by claims that some behavior results because of its optimality (Brandon & Rausher, 

1996; Orzack & Sober, 1994, 1996; Seger & Stubblefield, 1996). An optimality-based 

explanation is typically understood to require the defense of three related claims: (i) behavior X 

occurs in situation Y; (ii) X is optimal in situation Y; and (iii) people do X because it is optimal. 

The first and second components are closely connected, as a characterization of the situation is a 

necessary precursor for demonstration of optimality. The first element is a primarily descriptive 

task; in a cognitive science context, this corresponds to empirical evidence of a particular 

behavior pattern. The second part is primarily theoretical/mathematical; the mathematical work 

of a rational analysis corresponds to the necessary demonstration of optimality. 

The third component of an optimality-based explanation is quite different from the other 

two: it requires one to show that the optimality of X played a causal role⎯typically, a major 

causal role⎯in people’s doing X. One must show that X’s optimality produced some “pressure” 

that pushed people (in some sense) towards behavior X, and so one must specify a mechanism or 

mechanism-schema by which behavior is shaped and moved towards X, as well as historical 

evidence that the mechanism was active and relevant. The term ‘cognitive mechanism’ is notably 

absent from this description of an optimality-based explanation, since the explanation focuses on 

changes in the behavior, rather than in any mechanism for the proximal production of the 

behavior. One can give an optimality-based explanation without ever appealing to, or even 

describing, the underlying cognitive mechanism that produces the behavior. Of course, ignorance 

about the underlying mechanism might make it significantly harder to defend the third claim, but 



descriptive knowledge of the cognitive mechanism producing X is not a necessary condition of 

an optimality-based explanation.  

There are two standard types of stories that have been provided for the third component. 

Probably the most common use of optimality-based explanations is to provide explanations of 

biological traits as evolutionary adaptations. In that domain, the third component comes from a 

(partial) demonstration that some trait A is widespread in a population because of natural 

selection on precursors of A in previous generations. Selection pressures generally act to increase 

the proportion of more optimal traits in a population, and decrease the less optimal traits. Thus, if 

X is optimal (and evolutionarily available), then selection pressures can explain why behavior X 

emerges (rather than A, B, or…). Evolutionary explanations of X’s occurrence in terms of its 

optimality trace a causal sequence in phylogenetic (i.e., evolutionary) time. The other standard 

route to providing the third component is through an account in ontogenetic time (i.e., individual 

development) that shows how the optimal behavior is acquired through learning mechanisms. 

One can explain behavior X by showing that people learn (perhaps implicitly) that X is the 

optimal behavior in some domain (and they do X for that reason). In both types of accounts, the 

primary focus is on the optimality of behavior in “normal” situations, since those are the ones in 

which the organism or lineage actually encounters pressure to behave optimally, whether in 

phylogenetic or ontogenetic time. Optimality-based explanations are thus based principally on 

ecological norms (Gigerenzer, 2000, 2006; Gigerenzer & Selten, 2001): what matters most is the 

fit of a behavior with the situation and environment, not some abstract theoretical ideal. 

There are tradeoffs between the two routes. For phylogenetic stories, there is no difficulty 

specifying or establishing the appropriate mechanism providing “pressure” towards optimality; 

natural selection requires no defense. One does, however, have to show that natural selection was 



causally relevant for this trait, and there are significant measurement challenges for such 

demonstrations, though they can sometimes be overcome (as in, e.g., Gilchrist, Azevedo, 

Partridge, & O'Higgins, 2000; Losos, 1992; McCracken, Harshman, McClellan, & Afton, 1999). 

In contrast, an account in ontogenetic time faces many fewer measurement challenges, since one 

can track the changes over time in an individual’s behavior (or the behavior of a population). 

That story must, however, show that the behavioral changes were the result of some “pressure 

towards optimality,” and it is frequently much harder to demonstrate that optimality was the 

reason for change. These tradeoffs naturally suggest a two-stage account: namely, provide an 

ontogenetic account for the occurrence of behavior X in the individual’s lifetime, and then argue 

that the necessary “pressure towards optimality” arises from a learning mechanism that has been 

optimized in phylogenetic time to find the optimal behavior in any particular situation. 

Regardless of the details, however, some story must be provided to have a full optimality-based 

explanation; one cannot simply stop with the assertion that “behavior X occurs and is optimal,” 

as it does not follow that optimality was the reason for X’s occurrence. 

Rational analyses aim to provide optimality-based explanations: “a rational explanation 

tells why the mind does what it does” (Anderson, 1991b, p. 410). In practice, however, rational 

analyses almost always consist solely in optimality analyses that show that a particular behavior 

is optimal for an environment, agent, and problem, followed by experiments to confirm that the 

optimal behavior occurs. An optimality analysis alone, though, is insufficient for an optimality-

based explanation, as there are many other reasons why X might occur. People might act 

optimally because of historical accident, or because there are no other options, or a number of 

other reasons. One can use an optimality argument as a heuristic device to suggest a novel 

descriptive theory (as suggested by Sloman & Fernbach, this volume), but an optimality-based 



explanation requires more. Rational analyses that fail to provide an account of how the behavior 

came to be fall short of full optimality-based explanations. There is no principled barrier to 

providing such explanations; rational analyses just have not typically done so in practice. 

Mechanism-based explanations offer a very different type of explanation than optimality-

based explanations. They aim roughly to describe the proximal sequence of causes that led to the 

behavior: they provide an answer to “how behavior X?” It is easiest to think about mechanism-

based explanations in terms of an over-simplified picture in which behavior results from 

cognitive mechanisms proceeding from some initial conditions. This picture is of course highly 

unrealistic, as it ignores the dynamic nature of cognition, the difficulty of individuating cognitive 

mechanisms, and so on. However, given this picture of the proximal causes of behavior, we can 

understand a mechanism-based explanation as one that provides a causal sequence that starts 

with initial conditions, and then moves through the cognitive mechanisms to a final effect that is 

the behavior X. Mechanism-based explanations are thus entirely descriptive: they point towards 

cause-effect sequences in the world without an attempt to explain why that particular sequence is 

the one that occurs. We can offer such explanations to account for both token instances of 

behavior X by a description of specifics of a particular situation, and type-level descriptions of 

behavior X by description of “standard” conditions and mechanisms. One frequently provides 

only the initial conditions or mechanism in a mechanism-based explanation for pragmatic 

reasons: one assumes that the other element is widely known. Most mechanism-based 

explanations offered in psychological papers, for example, focus on cognitive mechanisms rather 

than initial conditions, since the latter are usually specified in the description of the experiment. 

Rational analyses essentially never offer mechanism-based explanations. Much of the 

literature on rational analysis is quite explicit with regards to its agnosticism about the 



underlying cognitive mechanisms (e.g., Anderson, 1990, 1991b; Chater, Oaksford, Nakisa, & 

Redington, 2003; Tenenbaum, Griffiths, & Niyogi, in press). A nice expression of the attitude is 

Anderson’s (1991a) statement that rational analyses should “prescribe what the behavior of a 

system should be rather than how to compute it” (p. 483). This basic attitude is also captured by 

descriptions of rational analyses as providing “as-if theories”: the agent acts as if she were 

performing the computations of the rational analysis, but need not actually do them. The standard 

justification for this agnosticism is in terms of the influential framework of levels provided in 

Marr (1982). Rational analyses offer theories at the computational level: the level of description 

that focuses on goals and problems for an information processor, as well as input-output 

specifications of solutions.3 By focusing on high-level characterizations of the problems and 

processes of an agent, proponents of rational analyses aims to sidestep questions of underlying 

mechanism or architecture since those are (the argument runs) not directly relevant to questions 

and concerns at the computational level. Any implementation that computes the particular 

(optimal, rational) input-output function is acceptable, and so cognitive science can proceed by 

focusing simply on that level.4 In practice, of course, rational analyses sometimes have some 

                                                
3 A different view (suggested to me by Josh Tenenbaum) is that Marr’s levels provide the scope 
of applicability: the computational level centers on problems that any agent must solve, the 
algorithmic level on humans, and the implementation level on neuroscience. Marr-levels in this 
interpretation do not correspond to “level of description,” though the computational level will 
still almost always be focused on input-output, since the underlying mechanism is not directly 
relevant at that level. 
4 Some proponents of rational analyses seem to be motivated by an additional worry: if one can 
only ever measure behavior (and external situations), then one cannot ever uniquely determine 
the underlying cognitive mechanisms, and so input-output is the best we can do. For example, 
Anderson (1990) writes: “behaviorism was correct…that you cannot infer the mechanisms in the 
black box from what goes in and what goes out” (p. 26). But although reasoning about 
unobserved entities and processes is hard, it is certainly not impossible. It is absolutely standard 
in the natural sciences, and no argument has been provided that cognitive psychology is 
somehow special in this regard.  



connection with underlying mechanisms, but the ideal is of strong separation between the 

rational analysis and implementing mechanism. 

Rational Analyses and Instrumentalism 

The strong agnosticism of rational analyses about cognitive mechanisms means that 

rational analyses are almost always instrumentalist: no commitment is made to the physical or 

mechanistic reality of the internal structure and computations of the model; they need not 

correspond to anything in the world. The mathematics is purely a computational device by which 

one can generate (hopefully) accurate predictions. If placed in an appropriate optimality-based 

explanation, then a rational analysis can provide more than a simple description, as we can say 

why the input-output function has the structure it does. The explanation is (when available) only 

at the level of structure in the <input, output> pairs, but at least it is some level of explanation. 

This observation serves to highlight the importance of the oft-neglected developmental 

component of an optimality-based explanation. Without it, rational analyses are strongly 

instrumentalist descriptions of an individual’s stimulus-response function, coupled with the 

observation that the function is optimal (though we do not know if that optimality is the reason 

for the individual’s actions). Instrumentalist theories are also unable, even in principle, to 

provide mechanism-based explanations, since they avoid any discussion of the underlying 

cognitive mechanisms. 

The lack of anchor in a mechanistic account points towards at least two conditions when 

one should have much less confidence in the predictions of an instrumentalist theory. The first 

situation is when one aims to use the instrumentalist theory outside of the domains for which it 

was originally developed. The claim here is not that instrumentalist theories can never be used in 

novel domains; rather, the concern is that it is much harder to determine for an instrumentalist 



theory whether it has a sufficiently broad foundation of empirical data to generalize successfully 

to novel domains. In general, one can transfer theories to novel cases when the underlying causal 

structures of the two situations are suitably similar. This standard translates in practice into 

having sufficient coverage in the empirical data to know the approximate causal or correlational 

structure (as appropriate) in the various conditions. If one has no knowledge of the underlying 

mechanisms, then there are no natural standards by which to judge whether the confirming 

empirical data derives from a suitably broad set of conditions. Instead, one simply has to collect 

data from a wide range of conditions⎯presumably informed by experiments showing which 

factors seem to be relevant⎯and then argue that this set provides sufficient coverage. There are 

obviously methods to mitigate this problem and ensure suitable generality for one’s theory, but 

the general problem is significantly worse for an instrumentalist theory than for a mechanistic 

one. Moreover, in the case of rational analyses, we have positive reasons to think that the 

behavior will differ significantly in unusual cases. Rational analyses aim to understand behavior 

as optimal in “standard” environments, and if behavior is actually tuned to the environment (as 

argued by many proponents of rational analyses), then we should expect behavior in unusual 

cases to be quite sub-optimal, and so not conform to a rational analysis that incorporates that 

situation.5  

In one particular case, mechanism information is actually necessary for prediction. In 

cognitive science, we often need to predict or explain an individual’s behavior when the system 

“breaks” in various ways, whether because of external trauma, various mental deficits, or 

perhaps even local features of a situation (e.g., extreme time pressure). As the literature on 

                                                
5 This is another point of agreement between proponents of rational analyses and of ecological 
rationality: both think that “failures” by experimental participants are often because the 
experiment fails to match the structure of the everyday environment along important dimensions. 



causation repeatedly reminds us (Pearl, 2000; Spirtes, Glymour, & Scheines, 1993), predictions 

about the effects of interventions, manipulations, or changes in the system require knowledge of 

the underlying causal structure. Instrumentalist theories provide no information about 

mechanisms, and so no grounds for predictions when the cognitive system breaks. In the 

particular case of a rational analysis, there is no reason to think that a broken cognitive system 

will behave optimally, or even close-to-optimally. We cannot just plug the boundary 

conditions/initial stimuli into the rational analysis to predict the behavior of a broken cognitive 

system, since we require information about how the system works. As an analogy, if we want to 

predict what a calculator will do (if anything) if we hit it with a hammer, then knowledge of the 

input-output functions will not suffice. We need to know how the underlying circuitry works to 

make accurate predictions.  

A more foundational problem is that the very goal of true agnosticism about mechanisms 

is ultimately a will-o’-the-wisp: even the most diehard proponent of agnostic rational analysis 

must eventually talk about underlying cognitive mechanisms in various ways. Rational analyses, 

for example, are supposed to incorporate computational limits, but the nature of those limits 

depends partly on the underlying cognitive architecture. Putatively instrumentalist rational 

analyses must have some connection to the underlying mechanisms, or possibility space for the 

mechanisms. One should not view this dependence as some impurity that should be purged; in 

general, connections between one’s various cognitive theories are clearly a virtue. Some degree 

of instrumentalism is acceptable and even necessary (see the remainder of this section), but the 

agnosticism of rational analyses unnecessarily (see section 4) forces a pervasive instrumentalism 

that denies the possibility of rational analyses providing mechanistic explanations.  



There are positive aspects to treating rational analyses as instrumentalist theories. 

Instrumentalism frequently has a bad name in the philosophy of science, but all theories⎯even 

putatively mechanistic ones⎯have some degree of instrumentalism, in that certain cognitive 

operations are left unexplained. For example, associationist models of causal learning (or more 

generally, stepwise error-correction models) are often characterized as mechanistic theories, but 

they provide no account of how the prediction is generated, how the error is calculated, and so 

on. Those theories provide a mathematical account of what is calculated (including various 

intermediate representations, such as associative strengths, error, and so on), but no explanation 

of how those intermediate calculations are carried out.6 Associationist models⎯like all 

theories⎯have components that are treated instrumentally. 

Completely instrumentalist theories can also be appropriate and useful in certain 

conditions. Instrumentalist theories provide accurate descriptions of the data, as well as some 

predictions for novel situations. Well-confirmed instrumentalist theories at least have the virtue 

of descriptive accuracy and predictive power for situations in their purview. Although it is 

tempting to discount the worth of descriptive adequacy, numerous episodes in the history of 

science reveal how hard it can be to find a theory that captures the observed data, even if we set 

aside issues of realism. We should be careful not to downplay the importance of finding a 

descriptive theory, particularly if it also provides reasonably accurate predictions. These 

descriptions can sometimes be computationally simpler than mechanistic models of the same 

data, since the instrumentalist theories are not bound by fidelity to the underlying mechanisms.  

Accurate descriptions of input-output functions also enable us to characterize the relevant 

factors for some cognitive problem, even if we do not know precisely how that factor is used in 

                                                
6 There are of course various neural accounts of associative learning (e.g., Maren, 2001; Menzel 
& Giurfa, 2001), but those are additional theories. 



the cognitive system. For example, rational analyses of causal reasoning highlight the importance 

of base rate information when one has ambiguous data, and that importance has been 

experimentally confirmed (e.g., Sobel, Tenenbaum, & Gopnik, 2004), though we do not know 

the mechanism by which base rate information is incorporated. Similar stories are available for 

other domains: rational analyses suggest that certain, previously ignored, environment and task 

features are cognitively relevant, and subsequent experimental research confirms the importance 

of those features. Instrumentalist theories are better able to highlight the relevant features of a 

situation, precisely because they are not committed to a mechanism. Overarching tendencies and 

generalizations can be straightforwardly expressed in the mathematics of the model. 

Complete theories certainly might be the desired end-state, but we need to recognize that 

much of science occurs in domains that we understand only poorly. Instrumentalist theories are 

metaphysically less ambitious, and so face a lower standard for confirmation and acceptance. 

They are more insulated from criticism since they can only be critiqued for failure to match the 

observed data. As a purely practical matter, one should sometimes pursue an only instrumentalist 

theory, with the understanding that a mechanistic theory will follow. In particular, if one wants to 

argue that some previously ignored factor is cognitively relevant, then instrumentalism allows 

one (by virtue of its metaphysical caution) to focus on that factor, rather than also arguing for a 

particular account of the underlying cognitive mechanisms. Rational analyses can be particularly 

helpful in these domains, as the assumptions of optimality provide a defeasible guide to the 

development of a novel theory. There is at least one descriptive theory⎯namely, the theory that 

says people act optimally for this task, environment, etc.⎯that is salient in the search space. 

Rather than searching quite broadly through the descriptive theory-space, one can target the 

optimal and near-optimal models for initial testing. 



Rational Analyses and Implementations 

The theses of the previous two sections can be roughly summed up as: rational analyses 

are almost always instrumentalist (section 1), and instrumentalist theories are generally 

undesirable, though they can be useful in some situations (section 2). One might thus make the 

natural inference that rational analyses are generally undesirable, but this inference presupposes 

that the first premise follows from a necessary feature of rational analyses. I claim, however, that 

the close tie between rational analyses and instrumentalist theories is unwarranted. The 

instrumentalism of rational analyses derives largely from the connection with the computational 

level of Marr’s trichotomy, and this section argues in two stages that this connection is neither 

necessary nor desirable. First, I argue that a careful consideration of the notion of 

‘implementation’ shows that (a naïve reading of) Marr’s trichotomy of levels is overly coarse, 

and forces instrumentalism where none is warranted. Second, and more importantly, this account 

of ‘implementation’ makes clear that the use of rational analyses is entirely orthogonal to the 

particular level of description. Proponents of rational analyses have unnecessarily tied 

themselves to thinking about behavior and cognition at one level of description. Rational 

analyses can (with appropriate care) have a much wider range of application.   

The first question is what it means for some mechanism M to implement a rational 

analysis R. The standard response in the rational analysis (and related) community seems to be: 

M implements R whenever the target behavior for which M provides a mechanism-based 

explanation is the same as the behavior for which R provides an optimality-based explanation. In 

practice, this means that M implements R whenever the input-output function for mechanism M 

is approximately the same as the optimal function described by R. The inputs and outputs are 

assumed to be (something like) stimuli and behavior, respectively; all that matters is same 



behavior in same situation. This understanding of ‘implementation’ fits quite nicely with the 

standard use of rational analysis at the computational level. As just one example, Take-the-Best, 

combined with the Recognition Heuristic, provides a mechanism explanation of behavior in 

binary choice problems with limited information (Gigerenzer, 2000; Gigerenzer & Goldstein, 

1996; Goldstein & Gigerenzer, 1999). Except in special situations (e.g., non-compensatory cues), 

Take-the-Best is not a “rational” algorithm in the sense of being optimal over all cases, as it 

sometimes ignores information that is potentially useful in decision-making. Nonetheless, Take-

the-Best has been described as “rational” because it produces behavior that closely approximates 

the optimal behavior in this context (Chater, et al., 2003; Gigerenzer, Czerlinski, & Martignon, 

1999; Martignon & Hoffrage, 1999). That is, the argument runs: Take-the-Best plausibly 

implements (the model in) a rational analysis because it produces appropriate behavior, and not 

because of any deeper connection or similarity.  

The proposal that ‘implementation’ means “input-output function approximation” appeals 

to the intuition that behavior is ultimately all that really matters; correct behavior is the only 

means for characterizing a system. This notion does seem to capture an important aspect of 

implementation: namely, that we can have different implementations of the same high-level 

algorithm. It also seems too weak to be a full characterization of implementation. For example, 

we may want to require an implementation of rational decision-making to have separable 

intermediate representations of utility and probability, but the current definition prohibits us from 

imposing any such restriction. An implementation (in the input-output sense) of a rational 

analysis also cannot provide any optimality-based explanation beyond what was already 

available in the rational analysis (Danks, submitted). This relation of implementation leads to 

additional understanding of how behavior is generated, but no additional understanding about 



why (in the optimality sense) the behavior occurs. The intertheoretic relation is so weak that the 

theories standing in it provide neither constraints nor information for one another. 

Philosophical work on intertheoretic relations suggests a different understanding of 

‘implementation’: namely, that the mathematics of the high-level theory is a special or limiting 

case of the mathematics of the lower-level theory (Batterman, 2002; Nickles, 1973; Rueger, 

2001, 2005; Smith, 1998). For example, Newtonian mechanics in a collection of 

indistinguishable particles is a limiting case implementation of the ideal gas law, since the latter 

is a limiting case of the relevant statistical mechanics equations in the former. This 

understanding of implementation can also hold between theories at the same level of description: 

Newtonian mechanics is a limiting case of relativistic mechanics as (v / c)2 → 0. This notion of 

limiting case implementation of a rational analysis is applicable to some psychological theories: 

for example, Griffiths & Tenenbaum (2005) argue that a mechanistic theory based on the χ2 

statistic is a limiting case implementation of rational causal learning using causal support 

(though probably not descriptively accurate). Much of the recent philosophical literature has 

focused on the difficulties that can arise when the limit process yields a singular limit (e.g., 

Batterman, 2002; Rueger, 2005); those issues have not arisen in the psychological literature. 

Implementation qua limiting case relation is obviously a much stronger intertheoretic 

relation than input-output approximation, since it arises when the appropriate mathematical 

relation holds between the equations of the two theories, rather than just the input-output 

functions. The two notions of implementation are logically independent (Danks, submitted), 

though in practice, limiting case implementation almost always implies input-output 

implementation, but not vice versa. This additional strength carries with it certain benefits, as 

numerous theoretical virtues are arguably transferred between theories that stand in this relation 



(Batterman, 2002; Nickles, 1973; Rueger, 2001). However, limiting case implementation seems 

to be too strong to use as a general understanding of ‘implementation,’ since it requires the 

intertheoretic connection to extend all the way down to the fundamental equations of the 

theories. This notion does not allow for some steps to be encapsulated in a “black box.”  An 

appropriate massive look-up table seems like it should count as a type of implementation of 

addition, even though the algorithm in the look-up table (e.g., a hash code) is not a limiting case 

of “real” addition. 

I suggest instead that ‘implementation’ is better understood by thinking about computer 

programming. In general, we can think about a computer program as a series of function or 

method calls, where all functions are defined in terms of either (i) a different series of function 

calls; or (ii) a particular input-output relation. Much of the literature on good programming 

techniques (e.g., Lakos, 1996; McConnell, 2004) focuses on exactly the question of how to 

divide up the program into suitable components. I propose then that a program L implements a 

program U just when we can transform L into U by a set of computable transformations, each of 

which takes (a) some sub-series of function calls in L and (b) replaces it with a single function 

call from U with the same input-output relation as the sub-series. That is, if we can “bundle” 

sequences of functions in L to yield U, then we say that L implements U. I contend that most 

rational analyses⎯and more generally, essentially all cognitive theories that make quantitative 

predictions⎯can be thought of as programs (broadly construed). This notion of ‘implementation’ 

thus transfers straightforwardly to the question of when a mechanistic theory M implements a 

rational analysis R.  

I do not intend anything particularly fancy by this characterization of ‘implementation.’ 

Similar ideas about the nature of implementation and hierarchies of description can be found in 



box-and-arrow diagrams in cognitive neuropsychology, or in the widespread use of flowcharts or 

dataflow diagrams to describe cognitive theories. The central difference here is that computer 

programs⎯and so my account of ‘implementation’⎯typically require much more specificity 

about the functions than one finds in standard box-and-arrow diagrams. A dataflow diagram can 

have a box labeled “Pragmatic Considerations” without any precise characterization of the input-

output function for that box; the same function call in a program or fully-specified theory would 

have to specify those input-output relations.  

On this characterization of ‘implementation’, input-output approximation corresponds to 

the case in which U⎯the theory being implemented⎯consists of a single function call that is 

defined by an input-output relation. Thus, any sequence of other function calls that has the same 

input-output relation will implement U. Limiting-case approximation is roughly the situation 

where U and L are nearly identical in terms of close correspondence between both function calls 

and the internal sequence, but L is slightly more specific, or uses a slightly different input vector. 

If the two programs are identical except that L uses a slightly different⎯and usually more 

general⎯method at a particular place in the computation, or L uses slightly more information, 

then L is a limiting case implementation (given a few technical constraints). Both types of 

implementation are therefore special cases of this characterization of ‘implementation.’ In 

general, the granularity of specification in U sets an upper bound for all implementing theories: L 

cannot implement U unless its sequence of function calls is more specific. 

This notion of ‘implementation’ appropriately captures the earlier observation that all 

theories are partially instrumentalist, and none are completely instrumentalist. The ubiquity of 

instrumentalism arises from the fact that all cognitive theories have some “basic” (relative to the 

theory) operations or functions for which no mechanism is provided, just as all computer 



programs have function calls (e.g., addition) that are specified only by input-output relations. 

One cannot specify every function call in terms of other function calls without regress. At the 

same time, all computer programs must be sensitive to the function calls that are available in the 

architecture, and so must be aware of characteristics of the system on which the program is 

running. One cannot write or run a computer program in complete ignorance of the underlying 

hardware system,7 and even the most agnostic rational analysis assumes that certain functions 

can somehow be computed. 

Most importantly, this characterization of ‘implementation’ leads to a more refined 

understanding of levels of description. This notion implies that “level of description for a theory” 

really means something like “granularity of the realist commitments of a theory.” By expressing 

a theory as a computer program, one must clearly identify which components of the theory 

should be interpreted realistically (i.e., the ordered sequence, and the function calls), and which 

only instrumentally (i.e., the internal computations in function calls specified only by input-

output relations). One is committed only to realism about the stated function calls in the 

“cognitive computer program,” and not to any particular way of generating that input-output 

relation. There is no ambiguity about what theories could implement this particular cognitive 

model. The complexity of interesting cognitive theories also suggests that there will very rarely 

be only three levels of description. One will typically be able to continue to “push downwards” 

to find even finer grains of description, and so there is no reason to accept Marr’s trichotomy of 

levels (or at least, a naïve understanding of it).8 There will typically be (almost) infinitely many 

                                                
7 Even for putatively cross-platform languages such as Java, important hardware constraints can 
periodically trickle up. Spolsky (2004, ch. 26) gives this phenomenon the wonderful title of The 
Law of Leaky Abstractions. 
8 The observation that Marr’s levels are too coarse is certainly not novel to me. For example, 
Anderson (1990, p. 17) argues that we should use four levels. 



levels of description, corresponding to the different ways that the function calls can be 

instantiated in sequences of other function calls, and so there is no sharp line distinguishing the 

computational, algorithmic, and implementation levels. Instead, there are many different degrees 

of realist commitments corresponding to the different granularities of specification of the 

cognitive program, ranging from a single function call at the most abstract, downward in a series 

of increasingly precise expressions of the program. 

The current view in cognitive science that there is a special computational level is 

reinforced by the persistent identification of that level (i.e., a single function call) with rational 

analyses. The preceding discussion shows that the use of rational analyses qua optimality 

analyses is entirely orthogonal to the level of description. A rational analysis viewed through the 

present lens simply aims to find the optimal sequence of function calls for some task and 

environment given some set of basic functions. Most rational analyses use a set of basic function 

calls corresponding to (roughly) all computable functions and so have no need to consider 

sequences of function calls, but one can ask about the optimal sequence even when we 

substantially restrict the basic functions. The problem is made even more interesting if one 

imposes time constraints on the overall problem and time costs for each of the function calls.9 In 

general, the optimality of a program is determined by its performance relative to its competitors; 

the level of description is irrelevant, except when the level is used to define the possibility space. 

Rational analyses thus actually have a much wider range of application that one typically finds. 

One can ask about the optimality of a particular mechanistic theory relative to other potential 

mechanistic theories. One can even determine the optimality of a theory relative to ones that 

have exactly the same overall input-output relation. The current agnosticism about mechanisms 

                                                
9 Without such a restriction, the space of programs (i.e., series of function calls) will typically 
cover all or almost all computable functions, even for quite restricted basis functions.  



that one finds in rational analyses is unnecessary: a rational analysis can focus directly on the 

optimal mechanism for a particular problem, and not just the optimal input-output function. 

Rational analyses focus on a property of a theory (relative to its competitors) that does not 

depend on the level of description. 

There is a pro-computational level argument that I have not yet considered. An optimality 

analysis aims to identify the highest-performing (by some metric) function from the search 

space. The explanatory power of the optimality analysis is arguably positively correlated with the 

size of the search space: if the optimal function is determined more by the lack of serious 

competitors than by high performance, then the optimality of the function seems to provide little 

explanatory power. The lack of competition seems to be explaining the occurrence of the 

behavior. Thus, a rational analysis is thought to be more powerful if the observed behavior is 

optimal relative to a large set of competitors, and the relatively unrestricted computational level 

provides the largest such set.  

This argument is superficially appealing, but I think that it makes a major mistake. 

Consider the general claim about the correlation between the explanatory power of an optimality 

analysis and the size of the search space. The claim of a correlation is plausible: if the search 

space is small, then it is (arguably) less likely that the optimality of the function is the reason for 

the individual having that function, and so it is correspondingly less likely that there is any 

optimality-based explanation available for the behavior. (Recall that an optimality-based 

explanation requires an account of the development of the function in which the optimality of the 

function plays an important causal role.) But we are not simply interested in optimality analyses; 

we want optimality analyses⎯and optimality-based explanations⎯that are actually true of the 

world. A demonstration that some function is optimal relative to a large search space is 



mathematically interesting, but it is not clear how it is relevant from a cognitive science point-of-

view unless that optimality, relative to that set of competitors, played some role in the 

development or maintenance of the behavior. To establish this latter point, the search space for 

the optimality analysis needs to be approximately the same as the search space for the 

developmental story. One needs to use the actual possibility space, and not one that that would 

have provided more explanatory power, if only it had been the actual possibility space. 

There is one final, practical argument in favor of research at the computational level. 

Search for the optimal function can be quite difficult, and is arguably made even more 

challenging if the possibility space is “complex” in various ways. The computational level⎯i.e., 

descriptions in terms of a single input-output function call⎯using all computable functions is a 

large search space with relatively simple structure. Thus (the argument continues), one should do 

optimality analyses at the computational level for practical reasons. Of course, to the extent that 

one subsequently learns more about the underlying physical and architectural constraints, one 

could amend the optimality analysis. But (the argument concludes) given our current (relative) 

ignorance about underlying cognitive architectures and implementations, one should do rational 

analyses at the highest level of description (unless one has substantial additional knowledge as 

in, e.g., Lee & Mumford, 2003). 

This practical argument suffers from the same flaw as the previous argument: our rational 

analyses only can figure in optimality-based explanations if they use approximately the actual 

space of competitors. Mathematical tractability may be an important pragmatic reason for 

working at the computational level at first, but it does not justify an exclusive focus on that level. 

Moreover, it is not even obvious that the search space of single input-output function calls is 

dramatically simpler once one actually has some knowledge of the possibility space of 



underlying mechanisms. It is often much easier to specify the space of possible functions in 

terms of the intermediate steps, rather than remaining at solely the input-output level. Any 

particular program will be described more simply by a single function call, but the space of 

possible programs will not necessarily be described more simply in those terms. It just is not the 

case that the description of the function possibility space at the level of single input-output 

function calls is always simpler than a description in terms of intermediate function calls. Thus, 

the claim that optimality analyses at the level of single input-output function calls will always be 

more mathematically tractable falls apart. Much depends on how much information one has 

about the underlying architectures or possible implementations.10 

Conclusion 

Rational analyses have, without a doubt, been a useful tool in finding novel descriptive 

theories, previously unknown causally relevant task and environment variables, and have 

provided powerful frameworks for modeling complex cognition. I have nonetheless argued that 

their current use is not quite right. Extant rational analyses almost never provide full optimality-

based explanations, as they almost never provide a developmental story⎯either phylogenetic or 

ontogenetic⎯that shows how the optimality played a major causal role in the establishment or 

maintenance of the behavior. By focusing on Marr’s computational level, proponents of rational 

analyses have turned their attention away from theories of underlying cognitive mechanism, and 

the result has been rational analyses that provide essentially no explanations at all; they are just 

instrumentalist accounts. But as I have tried to argue in the last section, this tie to the 

computational level is entirely unnecessary: conditional on a set of competitors, the level of 

                                                
10 Of course, my reply assumes that human cognition is not arbitrarily plastic (in the relevant 
sense). If people can actually implement almost any computable function, then the restriction to 
the broadest search space at the computational level is probably justifiable.  



description of a theory is irrelevant to its optimality. The level of description might shape the 

possibility space in certain ways, but that does not imply that rational analyses can only be 

carried out at the highest levels of description. Rational analyses can and should be performed at 

all levels of description, depending on the particular knowledge one has about the underlying 

cognitive mechanisms at that level. 
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