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Equilibria of the Rescorla–Wagner model
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Abstract

The Rescorla–Wagner model has been a leading theory of animal causal induction for nearly 30 years, and human causal

induction for the past 15 years. Recent theories (especially Psychol. Rev. 104 (1997) 367) have provided alternative explanations of

how people draw causal conclusions from covariational data. However, theoretical attempts to compare the Rescorla–Wagner

model with more recent models have been hampered by the fact that the Rescorla–Wagner model is an algorithmic theory, while the

more recent theories are all computational. This paper provides a detailed derivation of the long-run behavior of the Rescorla–

Wagner model under a wide range of parameters and experimental setups, so that the model can be compared with computational

theories. It also shows that the model agrees with competing theories on a wider range of cases than had previously been thought.

The paper concludes by showing how recently suggested modifications of the Rescorla–Wagner model impact the long-run behavior

of the model.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Rescorla and Wagner (1972) presented a model to
explain some unusual results in animal learning. The
Rescorla–Wagner model (henceforth, the R–W model)
has since become influential in a wide range of areas of
cognitive psychology (for an overview of its impact, see
Siegel & Allan, 1996). In particular, a number of
researchers have argued that the R–W model can
account for much of the data on causal learning in
humans (Baker, Mercier, Vallée-Tourangeau, Frank, &
Pan, 1993; Lober & Shanks, 2000; Shanks, 1995; Shanks
& Dickinson, 1987). Modifications of the R–W model
have also been suggested to help account for some
experimental data that seemingly conflict with it (see
Miller, Barnet, and Grahame (1995) for an overview of
the strengths and weaknesses of the R–W model, and
see, e.g., Tassoni (1995) or Van Hamme and Wasserman
(1994) for suggested modifications).
The R–W model describes the step-by-step changes

in an individual’s judgments of causal strength as
that individual sees more cases. For example, an

individual might want to know whether a certain
kind of fertilizer causes plants to bloom more often.
So, the individual might apply the fertilizer to some
plants, and then determine which plants bloomed. The
R–W model describes how the individual’s judgment
of the causal efficacy of the fertilizer changes as she
sees each plant (with or without fertilizer; blooming
or not blooming) individually. The R–W model is
entirely iterative; nothing is said about the long-run
behavior.
For several reasons, it would be useful to know how

the R–W model behaves in the long run. One reason is
that there are competing theories (e.g. Cheng, 1997) that
describe only the long-run behavior. Hence, to compare
the theories, we must either give an iterative instantia-
tion of Cheng’s theory (of which there are infinitely
many), or else provide the (uniquely determined) long-
run behavior of the R–W model. A second reason for
wanting to know the long-run predictions of the R–W
model is that the model accurately predicts some aspects
of acquisition performance, which has led some
researchers to argue that (at least part of) human causal
learning must be based on something like the R–W
model. However, if the long-run predictions of the
model are incorrect, then we no longer have reason to
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think that the R–W mechanism is responsible for our
short-run acquisition performance.1

There has been prior theoretical work to determine
the long-run behavior of the R–W model. One strand of
research has focused on simplified experimental designs.
Specifically, if we have only one binary cue and one
binary effect, then Chapman and Robbins (1990)
showed (using a similar method to that used in the first
part of this paper) that the R–W model computes the
probabilistic contrast ðPðEjCÞ � PðEjBCÞÞ: Wasser-
man, Elek, Chatlosh, and Baker (1993) then extended
this derivation to allow for a wider range of parameter
values (but still with the same experimental design).
Another strand of work has centered on the behavior

of the R–W model with a restricted set of parameters.
Sutton and Barto (1981), Melz, Cheng, Holyoak, and
Waldmann (1993), and Cheng (1997) used the equiva-
lence, under certain parameter constraints (given in the
following section), of the R–W model with the Widrow-
Hoff rule (from Widrow and Hoff, 1960) to derive the
model’s long-run behavior under those constraints. Using
the same parameter constraints, Gluck and Bower (1988,
1990) demonstrated the equivalence of the R–W model to
a particular adaptive network. They then derived
equations for the long-run behavior of an adaptive
network similar (but not identical) to the R–W model
using matrix notation similar to that used in the second
part of this paper. In neither case, however, did they
derive the equilibria for arbitrary parameter values.
We also might hope to use previous work on the delta

rule, which is closely related to the R–W model. In
particular, Stone (1986) provides a characterization of
the long-run behavior of the delta rule in terms of the
input–output correlations and the pseudo-inverse of the
inter-input correlations. However, the R–W model is not
simply a restricted form of the delta rule, nor vice versa.
The R–W model allows for the learning rates to vary
depending on the particular observed case; the delta rule
allows for multi-dimensional and many-valued inputs
and output. In addition, suggested modifications of the
R–W model (considered in the later parts of this paper)
move even further from the delta rule. Therefore, we
cannot easily make use of Stone’s results about the long-
run behavior of the delta rule.
None of the previous theoretical work was completely

general; it all made assumptions either about the
experimental design or else about the parameter values.2

In this paper, I show how to determine the long-run
behavior of the R–W model outside of both types of
constraints. The methods used in this paper will also
generalize so that we can describe the long-run behavior
of recently suggested modifications of the R–W model.
A claim in Lober and Shanks (2000) demonstrates the

problems that result from not having a fully general
theory of the asymptotic behavior of the R–W model.
They argue that the R–W model is able to account for a
specific phenomenon (the base-rate effect) if a parameter
constraint is removed (and they mistakenly claim that
Cheng’s (1997) criticisms of the R–W model ignored this
possibility). While their analysis is correct, they make the
more general claim that ‘‘the unrestricted [R–W] model is
able to explain many phenomena that are inconsistent
with the restricted model’’ (Lober & Shanks, 2000, p.
198). However, Lober and Shanks’ analytic solution for
the long-run behavior of the unrestricted R–W model
applies only to a restricted experimental design (one
binary cue), and so we have no basis for evaluating their
broader claim about the unrestricted R–W model.
Since there is no fully general analysis, when a

researcher wants to know the long-run behavior of the
R–W model for a particular experimental design that
does not accord with the Widrow–Hoff restriction on
parameters, she must run a simulation to determine the
value to which the model (roughly) stabilizes. For
example, Wasserman, Kao, Van Hamme, Katagiri, and
Young (1996) used simulations to investigate cue
overshadowing in the R–W model (and one other
theory, which we will not consider here). Because their
initial simulations ran only for 96 iterations, and seemed
to give unusual results, they reran the simulations and
‘‘determined that 800 trials provided ample opportunity
for the models to reach a stable point’’ (p. 259). Their
decision, while ultimately correct, was nevertheless
arbitrary. It is entirely possible (depending largely on
the parameters) that the model still had not settled down
after 800 iterations. The methods described in this paper
eliminate the need for this kind of arbitrary decision
about the stopping point.
This paper provides a straightforward algorithm for

determining, for arbitrary parameter values and experi-
mental setup, the ‘‘stable points’’ of the R–W model. It
turns out that there is not always a unique stable point,
and I further show how to determine when there are
multiple stable points, and, for certain constraints,
which stable point the R–W model tends towards.
Finally, I apply this method to the modified R–W
models suggested by recent experimental work.

2. The Rescorla–Wagner model

The R–W model applies to situations in which
we have a well-defined set of logically independ-

1Thanks to Patricia Cheng for bringing this second reason to my

attention.
2There is one other strand of work, best exemplified by Yamaguchi

(1999). In that work, the R–W model is expressed as a set of difference

or differential equations, and then Mathematica is used to determine

the limit value of the equations. However, to allow for different

parameter values (or a different experimental design), we must start the

whole process over. Therefore, results obtained using this method are

not readily generalized.
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ent3 cues fC0;y;Cng corresponding to the potential
causes, and a well-defined outcome O: By convention,
C0 is assumed to be the experimental context (e.g.,
the room in which the experiment is performed). The
other cues and the outcome are the events we are testing.
For example, in a traditional animal conditioning
experiment, we might have C1 ¼ a tone at 60 Hz; C2 ¼
0:5 s light flash; and O ¼ 0:1 s shock. An experiment to
test human causal learning might use C1 ¼ fertilizer 1;
C2 ¼ fertilizer 2; O ¼ tall plants. Since it greatly
simplifies the presentation of the results in this paper,
we will assume that all cues and outcomes are binary
variables that, for each stage in an experiment, are either
present or absent (true or false).4 Furthermore, Vi

designates the ‘‘associative strength’’ of the outcome
with the ith cue. The associative strength is (roughly) the
strength attributed by the organism to the cue-outcome
connection.
Given this framework, the R–W model says that the

associative strength of cue Ci with the outcome after
time t is V tþ1

i ¼ V t
i þ DV t

i ; where DV t
i is given by:

ai is a measure of the salience of the particular cue. In
other words, it allows us to take into consideration the
fact that some cues (e.g., a shock) might be more obvious
to the organism than others (e.g., a quiet tone). This
unitless parameter only has meaning relative to the other
cue saliences. b1 and b2 represent the salience of the
particular situations in which the outcome does or does
not occur. l is the maximum level of associative strength
possible, and in animal experiments, is usually thought
to be proportional to the intensity of the outcome.
The Widrow–Hoff rule is simply Eq. (1) with all of the

ai’s equal, l ¼ 1; and b1 ¼ b2: Widrow and Hoff (1960)
showed that, in the long run, we can minimize the sum
of the squared error for the pattern frequencies in the
data by updating the Vi’s using the Widrow–Hoff
rule. Cheng (1997) used Widrow and Hoff’s result to
derive some conditions under which the R–W model
(with appropriate parameters) computes conditional

contrasts. However, the method used by Widrow and
Hoff for determining the long-run behavior does not
readily generalize to other parameters permitted by the
R–W model.5

The notion of an asymptote for the R–W model is not,
in general, well defined. If there are combinations of
cues for which the outcome is not deterministic (i.e.,
always occurring or not occurring), then changes in
associative strength need not tend to zero as we
accumulate more data. Hence, there is not really a sense
in which the associative strength of a cue in the R–W
model ‘‘converges’’ to a particular value.
Therefore, rather than talking about asymptotes, I

will focus on finding equilibria for the R–W model. We
can think about the R–W model as ‘‘settling down’’
when the expected change for each of the associative
strengths is zero, even though the actual change will
almost certainly be non-zero. I define a vector of
associative strengths V ¼ /V0;y;VnS (one for each
cue) to be an equilibrium of the R–W model for a

probability distribution provided that, for every cue, the

expected value (if we assume random presentation of the
cases) of the change in the associative strength of that
cue with the outcome is zero, that is, if and only if
8i ðEðDViÞ ¼ 0Þ: The equilibrium values will be depen-
dent on the frequency with which various combinations
of cues appear in the actual experiment, and, for the
purposes of this paper, I will regard an experimental
design as governed by a joint probability distribution on
the cues and the outcome, regarded as binary variables.
I want to emphasize, however, that a learner using the
Rescorla–Wagner model will, in many cases, not

converge on the equilibrium for that experimental
design, but rather will only converge on a neighborhood
of the equilibrium (where the size of the neighborhood is
dependent on, e.g., the learning rates).

3. Equilibria of the Rescorla–Wagner model

In this section, I provide the general form for the
long-run equilibria of the R–W model in terms of the

DV t
i ¼

0 if the cue does not appear at time t;

aib1 l�
P

Cue Cj is present at time t

Vj

 !
if the cue appears and the outcome is present at time t;

aib2 0�
P

Cue Cj is present at time t

Vj

 !
if the cue appears and the outcome is absent at time t:

8>>>>>>><
>>>>>>>:

ð1Þ

3By ‘logically independent,’ I simply mean that the description of

one cue does not include another one. For example, we cannot have

C1 ¼ ‘‘green light flash’’, and C2 ¼ ‘‘green light flash and red light

flash’’, where the green flash in the two cues is the same.
4The R–Wmodel actually only requires that each cue have a marked

case, which need not correspond to the presence of the cue. However,

the methods used in this paper are not changed by assuming that the

marked state is the presence of the cue, and in fact this assumption

holds true of most experiments in this area.

5The problem with the Widrow–Hoff method is that it starts with

the asymptotes, and works backwards to find a procedure that will

produce those asymptotes. Hence, it is (to a certain extent) just good

fortune that the R–W model is equivalent to the Widrow–Hoff rule for

certain parameters.
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probability distribution, as well as an example demon-
strating its use. In the following section, I prove that this
method correctly yields the equilibria of the model. For
the purposes of this presentation, I assume that b1 ¼
b2 ¼ b; and that l ¼ 1: These are standard theoretical
assumptions (though they are not necessarily used when
simulations are performed), and they simplify the
derivations. I will show in a later section how to relax
these assumptions. I do not, in contrast to Cheng (1997),
assume that the ai’s are equal.
Given a probability distribution over the cues and

outcome, a vector of associative strengths is an
equilibrium of the R–W model for that distribution if
and only if it is a solution to the following set of n þ 1
equations:

PðOjCiÞ �
Xn

j¼0
PðCjjCiÞVj ¼ 0: ð2Þ

In matrix form, the system of n þ 1 equilibrium
equations is

PðC0jC0Þ PðC1jC0Þ y PðCnjC0Þ
PðC0jC1Þ PðC1jC1Þ y PðCnjC1Þ

y y y y

PðC0jCnÞ PðC1jCnÞ y PðCnjCnÞ

0
BBB@

1
CCCA

V0

V1

y

Vn

0
BBB@

1
CCCA

¼

PðOjC0Þ
PðOjC1Þ

y

PðOjCnÞ

0
BBB@

1
CCCA: ð3Þ

The equilibrium values of the Vi’s, can therefore be
determined by using standard Gaussian elimination on
the following augmented matrix (noting that
PðCjjCjÞ ¼ 1):

1 PðC1jC0Þ y PðCnjC0Þ ^ PðOjC0Þ
PðC0jC1Þ 1 y PðCnjC1Þ ^ PðOjC1Þ

y y y y ^ y

PðC0jCnÞ PðC1jCnÞ y 1 ^ PðOjCnÞ

0
BBB@

1
CCCA:

We can then determine the value of each of the Vi’s by
reducing the part on the left of the dotted line to an
upper triangular matrix. Matrix programming lan-
guages provide routines for easily solving the above
system of equations. A Java applet implementing the
fully general algorithm (which determines equilibria
even outside of the above parameter restrictions) is
available at: http://www.phil.cmu.edu/guests/ddanks/
RWCalculator.html.
To illustrate the practical implementation of the

above method, consider an experiment from Spellman
(1996). Her cover story is that there are two liquids (red
and blue) that are potentially fertilizers, and the
experimental participant is given the rates at which
flowers bloom for the four possible conditions (no

liquid, red liquid, blue liquid, and both liquids). Let us
define the cues to be:

C0: the constant background (e.g., the pots in which
the flowers are grown),

C1: the red liquid,
C2: the blue liquid.
In the experiment, the summary statistics for bloom-

ing are (p. 173; first experiment in A):

* red and blue liquid present: 5/5 plants flowered,
* red liquid only: 10/15 plants flowered,
* blue liquid only: 5/15 plants flowered,
* no liquid present: 0/5 plants flowered.

Using these contingencies, we can compute the
probabilities needed for the augmented matrix that
represents the system of 3 equations. That matrix is

PðC0jC0Þ ¼ 1 PðC1jC0Þ ¼ 0:5 PðC2jC0Þ ¼ 0:5 PðEjC0Þ ¼ 0:5

PðC0jC1Þ ¼ 1 PðC1jC1Þ ¼ 1 PðC2jC1Þ ¼ 0:25 PðEjC1Þ ¼ 0:75

PðC0jC2Þ ¼ 1 PðC1jC2Þ ¼ 0:25 PðC2jC2Þ ¼ 1 PðEjC2Þ ¼ 0:5

0
B@

1
CA:

Straightforward Gaussian elimination on this matrix
yields:

V0 ¼ 0;

V1 ¼ 2=3;

V2 ¼ 1=3;

which are the associative strengths the R–W model
should approach in the long run for her experimental
design.

4. Derivation of the equilibrium algorithm

In this section, I show that the above method
correctly determines the equilibria. Given some parti-
cular pattern of cues and outcome, and the current
associative strengths, Eq. (1) defines the change in Vi for
any of the cues. Define di to be 1 if cue Ci appears, and 0
if it is absent. Similarly, define dO to be 1 if the outcome
occurs, and 0 if it is absent. Then, for any particular
stage, we can rewrite Eq. (1) as

DVi ¼ diaib dO �
X
dj¼1

Vj

0
@

1
A: ð4Þ

Define a cue pattern as the combination of cues (or
their absences) that appear in a trial. I will use ‘B’
before a cue to indicate the absence of the cue. Thus, if
we have four possible cues, then one possible cue pattern
is: C0BC1C2C3 (i.e., all of the cues except C1 occur). I
define ExpDesign to be the set of all possible cue
patterns allowed in the experimental design. So, for
example, if we have two possible cues fC1;C2g that can
appear separately, and the constant background cue C0;
then ExpDesign ¼ fC0C1C2; C0BC1C2; C0C1BC2;
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C0BC1BC2g: Also, define ExpDesignðX Þ as the set of
all possible cue patterns allowed in the experimental
design in which the cue(s) X appears (unnegated). So, to
use the previous example of two cues, ExpDesignðC1Þ ¼
fC0C1C2;C0C1BC2g: Finally, for some cue pattern p;
we will define ShownðpÞ to be the set of indices of the
cues that appear in the pattern. For example,
ShownðC0BC1Þ ¼ f0g; and ShownðC0C1Þ ¼ f0; 1g:
Recall that a particular vector of associative strengths

is an equilibrium if and only if the expected change for
all of the strengths is zero. Returning to Eq. (4), DVi is
zero for all patterns peExpDesignðCiÞ: Hence, we can
restrict our attention to pAExpDesignðCiÞ: We need to
compute the expected change for an arbitrary pattern
pAExpDesignðCiÞ: dO will be 1 with probability PðOjpÞ;
and 0 with probability PðBOjpÞ: Therefore, for a
particular pattern p; the expected value of Eq. (4) is

EðDViÞ ¼PðOjpÞdiaib 1�
X
dj¼1

Vj

0
@

1
A

þ PðBOjpÞdiaib �
X
dj¼1

Vj

0
@

1
A: ð5Þ

Taking advantage of the fact that PðOjpÞ þ PðBOjpÞ ¼
1; we can rewrite (5) as

EðDViÞ ¼ diaib PðOjpÞ �
X
dj¼1

Vj

0
@

1
A: ð6Þ

Eq. (6) is the expected change for a particular pattern.
Equilibria were defined as those values for which the
overall expected change is zero. Since the patterns are all
mutually exclusive, the total expected change is just the
sum of these changes, weighted by the probability with
which each pattern occurs (i.e., PðpÞ). In other words,
for every cue Ci; we have that

EðDViÞ ¼
X

pAExpDesignðCiÞ
PðpÞaib


 PðOjpÞ �
X

jAShownðpÞ
Vj

0
@

1
A: ð7Þ

To find the equilibria of the R–W model for a particular
probability distribution P; we set each of these
EðDViÞ ¼ 0; and solve for the Vi’s. For any particular
i; ai and b appear in every term of the sum, and so we
can divide through by them (and since the EðDViÞ ¼ 0;
this division has no effect on the right-hand side). We
can then separate the constant terms from the Vj terms,
and we have

EðDViÞ ¼ 0 ¼
X

pAExpDesignðCiÞ
PðpÞPðOjpÞ

�
X

pAExpDesignðCiÞ
PðpÞ

X
jAShownðpÞ

Vj: ð8Þ

Consider just the first sum in (8). First, note that,
since PðpÞPðOjpÞ ¼ PðO&pÞ; each term in the sum is the
joint probability distribution of O and the particular
pattern p; where the only condition on the p’s is that
they must all contain cue Ci: But since the sum is over all

possible patterns that contain Ci; this sum is just equal
to PðO&CiÞ: the joint probability of the cue Ci and the
outcome.
Consider the second sum in Eq. (8). Note that Vj only

occurs when jAShownðpÞ for a pattern p: Hence, we can

rewrite this term as
Pn

j¼0
P

pAExpDesignðCiCjÞ PðpÞVj:
6

For each Vj; the coefficient is just the sum of the

probabilities of the occurrences of patterns with Ci and
Cj: But this is just equal to PðCi&CjÞ: the joint

probability of Ci and Cj:Hence, we can rewrite Eq. (8) as

EðDViÞ ¼ 0 ¼ PðO&CiÞ �
Xn

j¼0
PðCj&CiÞVj: ð9Þ

Since PðA&BÞ ¼ PðAjBÞPðBÞ; we can divide both sides
by PðCiÞ; which results in the equations described in (2).

5. Generalizations of the Rescorla–Wagner model

Throughout these derivations, I have assumed that
b1 ¼ b2 ¼ b; and that l ¼ 1: I will now relax those
assumptions. First, let us assume that la1: Then Eq. (7)
becomes

EðDViÞ ¼
X

pAExpDesignðCiÞ
PðpÞaib


 lPðOjpÞ �
X

jAShownðpÞ
Vj

0
@

1
A: ð10Þ

Since l only appears in the term without any Vj ’s, the
only difference in the final equations is that the PðO&CiÞ
term is multiplied by l: Hence, we can rewrite Eq. (2) as

lPðOjCiÞ �
Xn

j¼0
PðCj jCiÞVj ¼ 0: ð11Þ

The matrix changes similarly.
The situation in which b1ab2 is important since it is

often thought (on theoretical grounds) that b14b2: This
inequality corresponds to the claim that cases in which
the outcome occurs are more salient to the organism
than cases in which the outcome is absent (though see
Lober and Shanks (2000) for arguments that the absence
of the effect can be more salient than its presence). To
incorporate this inequality, we need to reconsider
Eq. (10), in which we collapsed situations in which the
outcome occurs and those in which it is absent. In order
to allow for b1ab2; we must separate those two sets of

6Recall that ExpDesignðCiCjÞ is the set of all patterns in which both

Ci and Cj occur.
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events. The outcome occurs with probability PðOjpÞ; and
it is absent with probability PðBOjpÞ: Hence, we have

EðDViÞ ¼ 0 ¼
X

pAExpDesignðCiÞ
PðpÞai PðOjpÞb1

2
4


 l�
X

jAShownðpÞ
Vj

0
@

1
A

þ PðBOjpÞb2 �
X

jAShownðpÞ
Vj

0
@

1
A
3
5: ð12Þ

As before, we can cancel the ai factors. Noting that
PðX jpÞPðpÞ ¼ PðX& pÞ and rearranging the terms some,
we have

EðDViÞ ¼ 0

¼
X

pAExpDesignðCiÞ
lPðO & pÞb1

�
X

pAExpDesignðCiÞ
ðPðO & pÞb1

þ PðBO & pÞb2Þ
X

jAShownðpÞ
Vj: ð13Þ

Since Vj terms only appear when the pattern contains Cj ;
we can further reduce Eq. (13) to

EðDViÞ ¼ 0 ¼
X

pAExpDesignðCiÞ
lPðO & pÞb1

�
Xn

j¼0

X
pAExpDesignðCiCjÞ

ðPðO & pÞb1

þ PðBO & pÞb2ÞVj: ð14Þ
Compare Eq. (14) to Eq. (7). If b1 ¼ b2 ¼ b; and l ¼ 1;
then (14) reduces to (7), as we would expect.7 Also, (14)
shows how to modify the matrix to take account of the
differing b’s, since the constant and Vj terms are already
separated. Hence, we have a method for determining, for
arbitrary parameters, the equilibria of the R–W model.

6. The matrix method of equilibrium determination

The above derivation of the equilibria of the R–W
model suggests a different characterization using ma-
trices.8 Suppose we have an enumeration (in arbitrary
order) of the possible cue patterns in our experimental
design, and further suppose that there are m different
cue patterns. We define the matrix M such that Mji ¼

diðpjÞ; where di is as defined earlier. That is, the element
in the ith column and jth row is 1 (0) if Ci is present
(absent) in cue pattern j: Define the m 
 1 matrix O such
that Oj ¼ PðOjpjÞ: Finally, define diagonal matrices for
the saliences: A such that Aii ¼ ai; and for the
probabilities of the patterns: P such that Pjj ¼ PðpjÞ:
Given these matrices, a vector V of associative strengths
is an equilibrium of the R–W model if and only if

MTPMV ¼ MTPO: ð15Þ
To see how this method works, consider the earlier

example from Spellman (1996). In that case, we had two
distinct cues which could each appear independently of
the other. So, we can arbitrarily enumerate the possible
cue patterns as p0 ¼ C0C1C2; p1 ¼ C0C1BC2; p2 ¼
C0BC1C2; p3 ¼ C0BC1BC2: The left-hand side of
Eq. (15) then becomes

1 1 1 1

1 1 0 0

1 0 1 0

0
B@

1
CA

Pðp0Þ 0 0 0

0 Pðp1Þ 0 0

0 0 Pðp2Þ 0

0 0 0 Pðp3Þ

0
BBB@

1
CCCA




1 1 1

1 1 0

1 0 1

1 0 0

0
BBB@

1
CCCA

V0

V1

V2

0
B@

1
CA:

Similarly, the right-hand side of (15) becomes

1 1 1 1

1 1 0 0

1 0 1 0

0
B@

1
CA

Pðp0Þ 0 0 0

0 Pðp1Þ 0 0

0 0 Pðp2Þ 0

0 0 0 Pðp3Þ

0
BBB@

1
CCCA




PðOjp0Þ
PðOjp1Þ
PðOjp2Þ
PðOjp3Þ

0
BBB@

1
CCCA:

Substituting in the probabilities from the actual experi-
ment, we find that V is an equilibrium if and only if it
satisfies

1:0 0:5 0:5

0:5 0:5 0:125

0:5 0:125 0:5

0
B@

1
CA

V0

V1

V2

0
B@

1
CA ¼

0:5

0:375

0:25

0
B@

1
CA:

The V that satisfies this equality is the same as the one
earlier found using the method of n þ 1 equations in
n þ 1 unknowns.

7. Derivation and generalization of the matrix method

Eq. (6) gives the expected change for a particular
variable, given some particular pattern. Translating that

7This happens because every term now has a b; so we can cancel

them out. Since l ¼ 1; we no longer have to include it. And since

PðO & pÞ þ PðBO & pÞ ¼ PðpÞ; we can use the same argument as

before to show that the coefficient for each Vj is PðCiCjÞ:
8 I am indebted to an anonymous reviewer for Journal of

Mathematical Psychology for pointing out and describing this

alternative formulation.
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equation into the matrix terminology, we have

ðfor pattern pjÞEðDViÞ ¼ Aiib Oj �
X

Mjk¼1
Vk

0
@

1
AMji:

ð16Þ
Note that we cannot move the final Mji term into the
sum in the brackets, since that term ensures that the
expected change is zero for all variables that do not
appear in the pattern pj: Given this formula for the
expected change for a particular cue-pattern pair, the
weighted sum of changes for a particular cue (for all
patterns) can be represented in matrix terms as

EðDViÞ ¼ bAii

Xm

p¼0
PppðOp � ½MV �pÞMpi; ð17Þ

where ½X�i is the ith row of matrix X. Therefore, the
overall change in the vector V is given by

EðDVÞ ¼ bAMTPðO�MVÞ: ð18Þ
If we then set the overall change in V equal to 0 (to find
the equilibrium), then we can immediately see that V is
an equilibrium if and only if

bAMTPMV ¼ bAMTPO: ð19Þ
If we then multiply (from the left) both sides of Eq. (19)
by 1=b and A�1 (given by A�1

ii ¼ 1=ai), then we have
Eq. (15) as a characterization of the equilibria of the R–
W model.
Throughout the above derivation, I again assumed

that b1 ¼ b2 ¼ b and that l ¼ 1: As in the first
characterization of the R–W equilibria, we need to
relax these assumptions. Consider first the case in which
la1: In this case, we simply multiply O by l; so (15)
becomes

MTPMV ¼ lMTPO: ð20Þ
Now let us assume that b1ab2: To determine the

equilibria in this case, we need to define two new
matrices: the m 
 m diagonal matrix N such that Nn

jj ¼
PðBOjpjÞ; and the diagonal matrix On with On

ii ¼ Oi

(that is, On is just O converted to a diagonal matrix).
For a particular pattern pj; we then have

EðDViÞ ¼Aii Ojb1 l�
X

Mjk¼1
Vk

0
@

1
A

2
4

þ b2Njj �
X

Mjk¼1
Vk

0
@

1
A
3
5Mji: ð21Þ

Taking the weighted average of (21) over all possible
patterns, we then have

EðDViÞ ¼Aii

Xm

p¼0
Ppp½b1Opðl� ½MV�pÞ

� b2Npp½MV�p�Mpi: ð22Þ

Therefore, the expected change of the whole strength
vector is given by

EðDVÞ ¼ AMTP½b1lO� ðb1On þ b2NÞMV�: ð23Þ

So the expected change will equal 0 just when

b1lM
TPO ¼ MTPðb1On þ b2NÞMV: ð24Þ

Hence, we can also use a matrix representation for the
equilibria of the R–W model for arbitrary parameters.

8. Infinitely many equilibria

One problem with the above methods is that they do
not necessarily determine a unique equilibrium. For-
mally, there are infinitely many equilibria if and only if
the determinant of the strength matrix is zero. That is,
there are infinitely many equilibria if and only if
detðMTPMÞ ¼ 0: This is a relatively simple computa-
tion, though it does require us to know the probabilities
with which each pattern appears. The R–W model is
fully deterministic, though, and so even if there are
infinitely many equilibria, only one will actually occur.
Therefore, we can ask: if there are an infinite number of
equilibria, can we determine in advance which one will
occur? It turns out that the answer to this question is
‘‘yes’’, for at least some situations. Specifically, we can
determine the actual equilibrium if the infinity of
possible equilibria are due to the presence of a set S of
coextensive cues, where by ‘‘coextensive’’ I mean that
the cues in the set S always and only appear together.
For example, if ExpDesign ¼ fX ;XABg; then A and B

are coextensive, since they only appear together. There
are infinitely many equilibria whenever we have coex-
tensive cues, since the determinant of MTPM will
always be zero. Nevertheless, if the infinity of equilibria
is due solely to the coextensive cues, then we can
calculate which equilibrium will actually occur.
First, we need to define a ‘‘new’’ cue CS; which is just

the composite cue composed of all of the cues in S: This
‘‘cue’’ always exists, since the actual cues only ever
appear together. So, in the example in the previous
paragraph, we would now have ExpDesign ¼ fX ;XCSg:
By assumption, there is a unique solution for the model
when the coextensive cues are replaced with VS: And
since cue strength is additive in the R–W model, we
know that

VS ¼
X
sAS

Vs: ð25Þ

In other words, the strength of the composite cue can be
decomposed into the sum of the strengths of the
individual cues. The natural next question is how much
strength will each cue in the composite receive? To
answer this question, consider the DVi equation for
some iAS: For any particular pattern p shown at time t;

D. Danks / Journal of Mathematical Psychology 47 (2003) 109–121 115



we can express this equation as DV t
i ¼ ai 
 Errort;

where Errort ¼ l�
P

jAShownðpÞ V t
j ; or 0, if Ci was not

shown. Since all of the cues in S are always shown
together, Errort will be the same for all of them, for all
times t:
Now, consider the sum over time of the changes in Vi

for some iAS: At time T ; we have

VT
i ¼

XT

t¼0
DV t

i ¼ ai

XT

t¼0
Errort: ð26Þ

In other words, the strength at any time T is just ai times
the sum of the errors for every time before T : However,
as noted above, Errort is the same for all of the cues in S;
and so the sum of the errors is also the same. Hence, we
have

ð8i; jASÞ Vi

ai

¼ Vj

aj

� �
: ð27Þ

Combining (25) and (27), we find that

8iAS VS ¼
X
jAS

ajVi

ai

 !

) 8iAS Vi ¼
aiP

jAS aj

VS

 !
: ð28Þ

So, if the infinity of equilibria is due to a set S of
coextensive cues, then the equilibrium that will actually
occur will be one in which the strengths of the
‘‘composite cue’’ and the remaining cues are determined
using one of the methods described above, and the cues
in S divide up the strength of their ‘‘composite cue’’ in
proportion to their saliences.
We might think that the conditions for this case are

quite restrictive. However, the standard blocking
experiment meets these conditions. In a standard
blocking design, we have ExpDesign ¼ fXA;XABg
(where X is the background), and typically the effect
always occurs. These experiments are designed to test
whether cue B acquires any associative strength. The
interesting feature of these experiments for this section is
that we have a set S ¼ fX ;Ag of coextensive cues which
results in infinitely many equilibria for the model as a
whole, and so the equilibrium that actually occurs will
depend on the relative saliences of X and A: Hence, two
blocking experiments that use identical statistics, but

that have different cover stories, should result in
different estimates of the strength of X and A:

9. Equilibria of an augmented Rescorla–Wagner model

There are known empirical results that the R–W
model cannot explain. One of the most significant of
these is retrospective updating. According to the R–W
model, Vi only changes when Ci occurs. Hence, it
cannot explain data in which strengths change, even
though the cue is not presented. Van Hamme and
Wasserman (1994) give a clear account of a case in
which strengths change when patterns without the cue
are shown. To correct this shortcoming, several authors
(e.g., Tassoni, 1995; Van Hamme & Wasserman, 1994;
Wasserman et al., 1996) have argued that the R–W
model should be altered to allow updating when the
absence of a cue is ‘‘informative’’ in some sense. The
intuitive idea is that sometimes (but not always) we learn
something from the absence of a cue.
Both Tassoni (1995) and Van Hamme and Wasserman

(1994) offer specific modifications of the R–W model to
account for the problematic data. Their theories are not
exactly the same, however. First, Tassoni allows that the
‘‘counterpart to l’’ in the equations when the outcome
does not occur can be different than zero. In other
words, he allows that the absence of the outcome (as
opposed a particular cue’s absence) might be particularly
salient. Second, Tassoni allows for the possibility that
not every cue absence is salient. Since Van Hamme and
Wasserman’s theory is just the special case of Tassoni’s
theory in which the absence of the outcome is not more
salient (than in the standard R–W model) and every cue
absence is salient, I will focus on Tassoni’s model.
Throughout this discussion, I will derive the equilibria
using the probability equations, rather than the matrices,
since it simplifies the presentation. All of the results in
this section can also be represented using matrices.
Let us consider Tassoni’s first modification of the

standard R–W model, since its effect on the long-run
equilibria is simply to introduce a correction factor, as in
the case of la1: To incorporate the first modification,
we need to allow the constant term to be some value
mo0 when the cue appears and the outcome is absent. In
other words, we need to rewrite the standard R–W DVi

equation as

DVi ¼

0 if the cue is absent;

aib l�
P

Cj is shown

Vj

 !
if the cue appears and the outcome is present;

aib m�
P

Cj is shown

Vj

 !
if the cue appears and the outcome is absent;

8>>>>>>><
>>>>>>>:

ð29Þ
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where �1omo0: This implies that we can rewrite the
EðDViÞ equations as

EðDViÞ ¼
X

pAExpDesignðCiÞ
PðpÞaib ðlPðOjpÞ

2
4

þ mPðBOjpÞÞ �
X

jAShownðpÞ
Vj

3
5 ¼ 0: ð30Þ

In effect, we need only correct for the fact that we
previously assumed that the contribution to the constant
factor of the ‘‘no outcome’’ cases was zero. We can
rewrite (30) using the same equivalencies as in the
standard R–W model to get

EðDViÞ ¼ lPðOjCiÞ þ mPðBOjCiÞ �
Xn

j¼0
PðCijCjÞVj ¼ 0:

ð31Þ

We simply add a (negative) correction factor to the
constant term, and solve the equations as before.
Now consider Tassoni’s second modification: namely,

that some cue absences are salient. For Tassoni, the
salience of the absence of a cue is a function purely of
the cue itself (and not, for example, of the previously
observed patterns). Therefore, we use gi to denote the
salience of the absence of cue Ci: The modified R–W
equations (with b1 ¼ b2 ¼ b; l ¼ 1; and m ¼ 0) are thus

In this model, the absence of a cue can be salient
primarily for two reasons: either the subject has come to
expect that cue based on previous experience with the
data, or because the experimenter explicitly points out to
the subject that the cue was absent. That is, a cue’s
absence is not always salient. Therefore, define qi;p to be
the probability that the absence of Ci is salient, given
that we have pattern p: We thus have the following
expected change equation:

EðDViÞ ¼
X

pAExpDesignðCiÞ
PðpÞai


 PðOjpÞ �
X

jAShownðpÞ
Vj

0
@

1
A�

X
pAExpDesignðBCiÞ


 PðpÞgiqi;p PðOjpÞ �
X

jAShownðpÞ
Vj

0
@

1
A ¼ 0:

ð33Þ

Noting that the first sum is the same as the standard
R–W model (with the ai factor included), we can reduce
(33) to

EðDViÞ ¼ aiPðO & CiÞ � ai

Xn

j¼0
PðCi & CjÞVj

�
X

pAExpDesignðBCiÞ
PðpÞgiqi;p

PðOjpÞ �
X

jAShownðpÞ
Vj

0
@

1
A ¼ 0: ð34Þ

We can only simplify (34) further if we constrain qi;p in
some way. One plausible constraint is that the prob-
ability that a cue absence is salient is independent of the
pattern shown. In that case, we can reduce (34) to

EðDViÞ ¼ ðai � qigiÞPðO & CiÞ

�
Xn

j¼0
ðaiPðCi & CjÞ � qigiPðCj & BCiÞÞVj ¼ 0:

ð35Þ

Eq. (35) is in a form that we can easily compute and
solve.
Before leaving this discussion of Tassoni’s model, I

should note that one drawback of the augmented
models is that they do not necessarily make the same
predictions as the standard R–W model on experiments
known to support the standard model. For example,
Baker et al.’s (1993) experimental condition PR.5/.4,
which they claim supports the standard R–W model,
cannot be automatically assumed to support Tassoni’s
augmented R–W model.9

DVi ¼

�gib 1�
P

Cj is shown

Vj

 !
if the cue is absent and the outcome is present;

�gib 0�
P

Cj is shown

Vj

 !
if the cue is absent and the outcome is absent;

aib 1�
P

Cj is shown

Vj

 !
if the cue appears and the outcome is present;

aib 0�
P

Cj is shown

Vj

 !
if the cue appears and the outcome is absent:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð32Þ

9Specifically, the augmented R–W models can make differing

predictions for any experiments for which there is not a perfect

equilibrium (defined in the next section).
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10. Perfect equilibria

The conditional DP theory of human causal judgment
predicts that the causal strength rating for a particular
factor will be (proportional to) the conditional contrast
for that factor (see, e.g., Spellman, 1996). The general
form of the conditional contrast for a particular cue is
given by DPC:fXg ¼ PðOjC & X Þ � PðOjBC & X Þ;
where X ranges over the possible states of the other
cues. So, for example, if we have two potential cues,
C1 and C2; then there are two conditional contrasts
for C1: DPC1:fC2g ¼ PðOjC1 & C2Þ � PðOjBC1 & C2Þ
and DPC1:fBC2g ¼PðOjC1 & BC2Þ�PðOjBC1 & BC2Þ:
Some conditional contrasts may not have definite values
for a particular cue, and even if all of the contrasts have
definite values, they may not agree. Nevertheless, in
order to compare the R–W model with the conditional
DP theory, we should determine the conditions under
which the equilibria of the R–W model consist of
conditional contrasts (given that they are defined and
equal regardless of X). Throughout the remainder of this
section, I will assume that b1 ¼ b2 ¼ b (though I place
no constraints on ai or l).
We can best express the desired condition by defining

a particular type of equilibrium: namely, a perfect
equilibrium. I earlier pointed out that, at an equilibrium,
the expected change of a cue strength is only necessarily
zero for the weighted sum of all of the patterns. Even at
equilibrium, the expected change for any particular
pattern might be quite different from zero. For some
equilibria, however, the expected change is zero regard-
less of the pattern. Hence, we have the following
definition:
A strength vector V ¼ /V0;y;VnS is a perfect

equilibrium if and only if 8pAExpDesignðlPðOjpÞ ¼P
jAShownðpÞ VjÞ: In matrix terminology, V is a perfect

equilibrium if and only if lO ¼ MV:
Not all experiments have a perfect equilibrium.

Consider the case in which the outcome occurs if and
only if two cues have the same value (either present
or absent), and in which we see all four cases. If there
were a perfect equilibrium, then the strength of the
background cue would have to be 1 (because the
outcome occurs when both of the variable cues do not
occur), and the strength of each variable cue would have
to be �1 (since the outcome is absent when exactly
one variable cue occurs). But then V0 þ V1 þ V2 ¼
�1aPðOjC0C1C2Þ:
It is important to note that a vector’s status as a

perfect equilibrium does not depend on the ai para-
meters in the model. Given the concept of a perfect
equilibrium, we have the following theorem (proof
provided in the appendix):

Theorem. For a particular experimental design, an

equilibrium V of the R–W model consists of l-scaled

conditional contrasts (to the extent possible) if and only if

V is a perfect equilibrium.

Hence, if we can determine the class of experimental
designs that have a perfect equilibrium, then we will
have found the class of designs for which the R–W
model computes (to the extent possible) l-scaled
conditional contrasts, regardless of the ai parameters.
Given that l is typically assumed to equal 1 for human
causal learning experiments, the class of perfect equili-
brium designs is thus the same as the class of conditional
contrast designs for the R–W model. Here (without
proofs) are three classes of experiments that always have
a perfect equilibrium:

1. Experiments with a nested cue design (see Cheng,
1997, for more details about what constitutes a nested
cue design).

2. Experiments in which every possible combination of
cues appears and, for each cue, all of that cue’s
conditional contrasts are the same.

3. Experiments in which there are three or fewer cues
(not counting the background cue), and, for each cue,
all of the conditional contrasts for that cue are the
same.

The fact that the R–W model computes (to the extent
possible) conditional contrasts in the first two classes of
experiments was previously demonstrated in Cheng
(1997, Appendices A and B) for equal ai parameters
and l ¼ 1: Almost certainly, these three classes of
experiments do not form an exhaustive list of experi-
ments with a perfect equilibrium. Determining such an
exhaustive list remains an open research question.

11. Conclusion

The methods described in this paper allow researchers
to determine the long-run behavior of the R–W model
under a wide range of parameter values, and even a
range of potential modifications to the model’s struc-
ture, but always assuming that cases are presented to the
subject in random order. Nevertheless, there are some
significant open questions about the long-run behavior
of the R–W model that remain. Some particularly
interesting questions are as follows:

1. I gave a procedure to determine, for restricted
conditions, which of infinitely many equilibria will
actually occur when the cases occur in a random
order. Is there a general procedure that makes no
assumptions about the experiment for determining
which of infinitely many equilibria will occur (under
these restricted presentation conditions)?

2. Throughout this paper, I have assumed that the data
are passed to the method in a random order—that is,
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the patterns are independently distributed. In reality,
almost no experiments are done this way. Typically,
the cases are ‘‘chunked,’’ in that subjects will see
several of one pattern, then several of another
pattern, and so on. Moreover, when there are
infinitely many equilibria, chunking will play some
role in determining the actual equilibrium. It is also
known that, when cases are chunked, the initial
weights can play a significant role in determining the
long-run behavior. Can we give a characterization of
the effect of chunking on the discussions of both the
standard and augmented R–W models?

3. This chunking of cases helped prompt the augmented
R–W models, since retrospective updating was first
noticed in experiments to test backwards blocking,
which requires chunking.10 As a result, it has been
claimed that the augmented R–W models give the
‘‘right’’ answer on a wider range of data than the
standard R–W model. Is this claim true?
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Appendix

Theorem. For a particular experimental design, an

equilibrium V of the R–W model consists of conditional

contrasts (to the extent possible) if and only if V is a

perfect equilibrium.

Proof. We begin by defining a new concept. Define a cue

pattern graph by the following construction: Write down
all of the patterns that are shown in the experiment. Let
r index the pattern pairs, /pr

i ; pr
BiS; that differ by only

the presence or absence of a single cue Ci: For each r;
and each i; connect pr

i and pr
Bi with a line whose

associated value, denoted Ai;r; is the difference in
outcome probabilities for pr

i and pr
Bi: In other words,

if two patterns, p1 and p2; differ only in that p1 contains
Ci and p2 does not, then connect them with a line whose

associated value is PðOjp1Þ � PðOjp2Þ: Consider each
cue Ci: If there are r and s such that Ai;raAi;s; then we
will say that the cue pattern graph is invalid, and the
construction stops. Otherwise, we assign Wi ¼ Ai;r: For
those j such that Aj;r is never defined (i.e., there are no
two patterns that differ only in cue Cj), determine the
range of values that are consistent with

8pAExpDesignðCjÞ
X

kAShownðpÞ
Wk ¼ PðOjpÞ

0
@

1
A:

If there is a j such that there are no possible values for
Wj; then the cue pattern graph is invalid and the
construction stops.
If the cue pattern graph is connected,11 then we are

done. Otherwise, consider all pairs of maximally
connected subsets.12 Find the two patterns, pi and pj;
in the different subsets whose symmetric difference13 is
least (or arbitrarily pick a pair, if there is more than
one). Connect pi and pj by an undirected edge if and
only if

P
iAShownðp1Þ Wi �

P
jAShownðp2Þ Wj ¼ PðOjp1Þ �

PðOjp2Þ; where we may have to consider a range of
values for some of the Wj’s. If the edge exists, associate
with it the above difference.
An equilibrium defined by the Wi’s of a valid,

connected cue pattern graph will be composed of
conditional contrasts (to the extent possible). Further-
more, note that the R–W model assumes that there is
always a constant background cue. Hence, we need only
the following lemma to finish the proof.

Lemma A.1. Assume there is a constant background cue.

There is a perfect equilibrium if and only if there is a valid,
connected cue pattern graph, and that perfect equilibrium

is given by the Wi’s defined in the construction.

Proof. ð)Þ Assume that there is a particular perfect
equilibrium V. To construct a valid, connected cue
pattern graph, consider first all of the pairs of patterns
that differ by only one cue. For all of these pairs of
patterns that, for example, differ only in cue Ck; pr

k; pr
Bk;

we assign Ak;r ¼ PðOjpr
kÞ � PðOjpr

BkÞ: Since V is perfect,
we also know that, for all r; Ak;r ¼

P
jAShownðpr

k
Þ Vj �P

jAShownðpr
Bk

Þ Vj ¼ Vk: Hence, for all cues Cj such that
at least one Aj is defined, each Aj will be the same, and

10Backwards blocking involves showing two cues together with an

outcome, and then showing just one of the cues with the outcome.

Intuitively, the second block of data tells the subject that the cue shown

only in the first block was not doing anything.

11A graph is connected if and only if, for every pair of variables X

and Y ; there is a path between X and Y :
12M is a maximally connected subset of S if and only if (i) M is

connected, and (ii) adding any variable from S\M (the variables in S

but not in M) to M would result in an unconnected set.
13The symmetric difference of two sets, A and B; is defined as the

union of the elements of A that are not in B; and the elements of B that

are not in A: Since we can think of patterns as sets of cues, this notion

is well defined here. For example, if p1 ¼ C0C1C2; and p2 ¼ C0BC1C2;

then the symmetric difference of the two patterns is fC1;BC1g:
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will be equal to Vj : If this produces a connected graph,
then we are done.
So, we can assume that we have multiple maximally

connected subsets. Consider connecting any two of
them. There will be an edge between the two patterns
(whose symmetric difference is least) if and only ifP

iAShownðp1Þ Vi �
P

jAShownðp2Þ Vj ¼ PðOjp1Þ � PðOjp2Þ:
But since V is a perfect equilibrium, this is always true.
Hence, we can always connect the subsets to produce a
fully connected graph.

ð(Þ Assume there is a valid, connected cue pattern
graph. Assume for reductio that the Wj ’s picked out by
this cue pattern graph do not form a perfect equilibrium.
In other words, assume that there is a pattern p such
that

P
iAShownðpÞ WiaPðOjpÞ: Lemma A.2 will be used

to show that this is impossible.

Lemma A.2. If we have a connected, valid cue pattern

graph, then the difference
P

iAShownðqÞ Wi � PðOjqÞ has

the same value for all patterns q:

Proof. Consider any arbitrary pattern q, and consider
an adjacent pattern r along one of the edges that ends at
q. There are three possible cases:

Case 1: Ci appears in q, but not in r. Then, since we
have defined Wi ¼ PðOjqÞ � PðOjrÞ; we haveX
jAShownðqÞ

Wj � PðOjqÞ ¼PðOjqÞ � PðOjrÞ

þ
X

jAShownðqÞ�fig
Wj � PðOjqÞ

¼
X

jAShownðrÞ
Wj � PðOjrÞ:

Case 2: Ci appears in r; but not in q: As in case 1, we
can use the fact that Wi ¼ PðOjqÞ � PðOjrÞ to show that
the differences are the same.

Case 3: q and r differ by more than one cue. Since
the cue pattern graph is valid and there is an edge
between q and r, it must be the case that there are Wi’s
such that

P
iAShownðqÞ Wi �

P
jAShownðrÞ Wj ¼ PðOjqÞ �

PðOjrÞ; and so immediately we have that the differences
are equal.
Since we made no assumptions about the patterns q or

r, and since there is a path (possibly of length greater
than one) connecting any pair of patterns, the differ-
ences must all be equal. &

Using this lemma and the above assumption, we can
conclude that, for all patterns p and q;

P
iAShownðqÞ Wi �

PðOjqÞ ¼
P

iAShownðpÞ Wi � PðOjpÞ ¼ aa0: Now, since
the cue pattern graph is valid, for every Wi; either an
edge (or edges) determines it, or else there is a range
of values that it could take on. The constant back-
ground cue appears in every pattern, and so there

cannot be an edge that determines it.14 However,
by construction of the cue pattern graph, the range
of values that W0 can take on must satisfy
8pAExpDesignðC0Þ

P
kAShownðpÞ Wk ¼ PðOjpÞ

� �
: There-

fore, for those patterns, the difference must be zero.
Since we showed that the differences must be non-zero
(on our reductio assumption), we have a contradiction.
Hence, the solution picked out by the cue pattern graph
must be a perfect equilibrium. &
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