
Rate-Agnostic (Causal) Structure Learning

Sergey Plis
The Mind Research Network,

Albuquerque, NM
s.m.plis@gmail.com

David Danks
Carnegie-Mellon University

Pittsburgh, PA
ddanks@cmu.edu

Cynthia Freeman
The Mind Research Network,

CS Dept., University of New Mexico
Albuquerque, NM

cynthiaw2004@gmail.com

Vince Calhoun
The Mind Research Network

ECE Dept., University of New Mexico
Albuquerque, NM

vcalhoun@mrn.org

Abstract

Causal structure learning from time series data is a major scientific challenge. Ex-
tant algorithms assume that measurements occur sufficiently quickly; more pre-
cisely, they assume approximately equal system and measurement timescales. In
many domains, however, measurements occur at a significantly slower rate than
the underlying system changes, but the size of the timescale mismatch is often
unknown. This paper develops three causal structure learning algorithms, each
of which discovers all dynamic causal graphs that explain the observed measure-
ment data, perhaps given undersampling. That is, these algorithms all learn causal
structure in a “rate-agnostic” manner: they do not assume any particular relation
between the measurement and system timescales. We apply these algorithms to
data from simulations to gain insight into the challenge of undersampling.

1 Introduction

Dynamic causal systems are a major focus of scientific investigation in diverse domains, includ-
ing neuroscience, economics, meteorology, and education. One significant limitation in all of these
sciences is the difficulty of measuring the relevant variables at an appropriate timescale for the par-
ticular scientific domain. This challenge is particularly salient in neuroimaging: standard fMRI
experiments sample the brain’s bloodflow approximately every one or two seconds, though the un-
derlying neural activity (i.e., the major driver of bloodflow) occurs much more rapidly. Moreover,
the precise timescale of the underlying causal system is unknown; it is almost certainly faster than
the fMRI measurements, but it is unknown how much faster.

In this paper, we aim to learn the causal structure of a system that evolves at timescale τS , given
measurements at timescale τM . We focus on the case in which τS is faster than τM to an unknown
degree. We assume that the underlying causal structure can be modeled as a directed graphical
model G without simultaneous influence. There has been substantial work on modeling the statis-
tics of time series, but relatively less on learning causal structure, and almost all of that assumes that
the measurement and causal timescales match [1–5]. The problem of causal learning from “under-
sampled” time series data was explicitly addressed by [6, 7], but they assumed that the degree of
undersampling—i.e., the ratio of τS to τM—was both known and small. In contrast, we focus on
the significantly harder challenge of causal learning when that ratio is unknown.

We provide a formal specification of the problem and representational framework in Section 2. We
then present three different Rate-Agnostic Structure Learning (RASL) algorithms in Section 3. We
finish in Section 4 by exploring their performance on synthetic data.

1



2 Representation and Formalism

A dynamic causal graphical model consists of a graph G over random variables V at the current time
t, as well as nodes for V at all previous (relative) timesteps that contain a direct cause of a variable
at the current timestep.1 The Markov order of the system is the largest k such that V t−k

i → V t
j ,

where superscripts denote timestep. We assume throughout that the “true” underlying causal system
is Markov order 1, and that all causally relevant variables are measured.2 Finally, we assume that
there are no isochronal causal edges V t

i → V t
j ; causal influences inevitably take time to propagate,

and so any apparent isochronal edge will disappear when measured sufficiently finely. Since we do
not assume that the causal timescale τS is known, this is a relatively innocuous assumption.

G is thus over 2V nodes, where the only edges are V t−1
i → V t

j , where possibly i = j. There
is additionally a conditional probability distribution or density, P (Vt|Vt−1), which we assume
to be time-independent. We do not, however, assume stationarity of P (Vt). Finally, we assume
appropriate versions of the Markov (“Variable V is independent of non-descendants given parents”)
and Faithfulness/Stability (“The only independencies are those implied by Markov”) assumptions,
such that the graph and probability distribution/density mutually constrain each other.

Let {t0, t1, . . . , tk, . . .} be the measurement timesteps. We undersample at rate u when we measure
only timesteps {t0, tu, . . . , tuk, . . .}; the causal timescale is thus “undersampled at rate 1.” We
denote the causal graph resulting from undersampling at rate u by Gu. To obtain Gu, we “unroll”
G1 by introducing nodes for Vt−2 that bear the same graphical and parametric relations to Vt−1

as those variables bear to Vt, and iterate until we have included Vt−u. We then marginalize out all
variables except those in Vt and Vt−u.

Marginalization yields an Acyclic Directed Mixed Graph (ADMG) Gu containing both directed and
bidirected edges [8]. V t−u

i → V t
j in Gu iff there is a directed path from V t−u

i to V t
j in the unrolled

graph. Define a trek to be a pair of directed paths (π1, π2) such that both have the same start variable.
V t
i ↔ V t

j in Gu iff there is a trek between V t
i and V t

j with length(π1) = length(π2) = k < u.
Clearly, if a bidirected edge occurs in Gm, then it occurs in Gu for all u ≥ m.

Unrolling-and-marginalizing can be computationally complex due to duplication of nodes, and so
we instead use compressed graphs that encode temporal relations in edges. For an arbitrary dynamic
causal graph H,H is its compressed graph representation: (i)H is over non-time-indexed nodes for
V; (ii) Vi → Vj in H iff V t−1

i → V t
j in H; and (iii) Vi ↔ Vj in H iff V t

i ↔ V t
j in H. Compressed

graphs can be cyclic (Vi � Vj for V t−1
i → V t

j and V t−1
j → V t

i ), including self-cycles. There is
clearly a 1-1 mapping between dynamic ADMGs and compressed graphs.

Computationally, the effects of undersampling at rate u can be computed in a compressed graph
simply by finding directed paths of length u in G1. More precisely, V t−u

i → V t
j in Gu iff there is

a directed path of length u in G1. Similarly, V t
i ↔ V t

j in Gu iff there is a trek with length(π1) =
length(π2) = k < u in G1. We thus use compressed graphs going forward.

3 Algorithms

The core question of this paper is: given H = Gu for unknown u, what can be inferred about G1?
Let JHK = {G1 : ∃u Gu = H} be the equivalence class of G1 that could, for some undersample
rate, yield H. We are thus trying to learn JHK from H. An obvious brute-force algorithm is: for
each possible G1, compute the corresponding graphs for all u, and then output all Gu = H. Equally
obviously, this algorithm will be computationally intractable for any reasonable n, as there are 2n

2

possible G1 and u can (in theory) be arbitrarily large. Instead, we pursue three different constructive
strategies that more efficiently “build” the members of JHK (Sections 3.2, 3.3, and 3.4). Because
these algorithms make no assumptions about u, we refer to them each as RASL—Rate Agnostic
Structure Learner—and use subscripts to distinguish between different types. First, though, we pro-
vide some key theoretical results about forward inference that will be used by all three algorithms.

1We use difference equations in our analyses. The results and algorithms will be applicable to systems of
differential equations to the extent that they can be approximated by a system of difference equations.

2More precisely, we assume a dynamic variant of the Causal Sufficiency assumption, though it is more
complicated than just “no unmeasured common causes.”

2



3.1 Nonparametric Forward Inference

For given G1 and u, there is an efficient algorithm [9] for calculating Gu, but it is only useful in
learning if we have stopping rules that constrain which G1 and u should ever be considered. These
rules will depend on how G1 changes as u → ∞. A key notion is a strongly connected component
(SCC) in G1: a maximal set of variables S ⊆ V such that, for every X,Y ∈ S (possibly X = Y ),
there is a directed path from X to Y . Non-singleton SCCs are clearly cyclic and can provably
be decomposed into a set of (possibly overlapping) simple loops (i.e., those in which no node is
repeated): σ1, . . . , σs [10]. Let LS be the set of those simple loop lengths.

One stopping rule must specify, for given G1, which u to consider. For a single SCC, the greatest
common divisor of simple loop lengths (where gcd(LS) = 1 for singleton S) is key: gcd(LS) = 1
iff ∃f s.t. ∀u > f [Gu = Gf ]; that is, gcd() determines whether an SCC “converges” to a fixed-
point graph as u → ∞. We can constrain u if there is such a fixed-point graph, and Theorem 3.1
generalizes [9, Theorem 5] to provide an upper bound on (interesting) u. (All proofs found in
supplement.)
Theorem 3.1. If gcd(LS) = 1, then stabilization occurs at f ≤ nF + γ + d+ 1.

where nF is the Frobenius number,3 d is the graph diameter, and γ is the transit number (see sup-
plement). This is a theoretically useful bound, but is not practically helpful since neither γ nor nF
have a known analytic expression. Moreover, gcd(LS) = 1 is a weak restriction, but a restriction
nonetheless. We instead use a functional stopping rule for u (Theorem 3.2) that holds for all G:
Theorem 3.2. If Gu = Gv for u > v, then ∀w > u∃kw < u[Gw = Gkw ].

That is, as u increases, if we find a graph that we previously encountered, then there cannot be
any new graphs as u → ∞. For a given G1, we can thus determine all possible corresponding
undersampled graphs by computing G2,G3, . . . until we encounter a previously-observed graph.
This stopping rule enables us to (correctly) constrain the u that are considered for each G1.

We also require a stopping rule for G1, as we cannot evaluate all 2n
2

possible graphs for any reason-
able n. The key theoretical result is:
Theorem 3.3. If G1 ⊆ J 1, then ∀u[Gu ⊆ J u].

Let G1E be the graph resulting from adding the edges in E to G1. Since this is simply another graph,
it can be undersampled at rate u; denote the result (G1E)u. Since G1E can always serve as J 1 in
Theorem 3.3, we immediately have the following two corollaries:
Corollary 3.4. If Gu * H, then ∀E[(G1E)u * H]
Corollary 3.5. If ∀u[Gu * H], then ∀E, u[(G1E)u * H]

We thus have a stopping rule for some candidate G1: if Gu is not an edge-subset ofH for all u, then
do not consider any edge-superset of G1. This stopping rule fits very cleanly with “constructive”
algorithms that iteratively add edge(s) to candidate G1. We now develop three such algorithms.

3.2 A recursive edgewise inverse algorithm

The two stopping rules naturally suggest a recursive structure learning algorithm with H as input
and JHK as output. Start with an empty graph. For each edge e (of n2 possible edges), construct G1
containing only e. If Gu * H for all u, then reject; else if Gu = H for some u,4 then add G1 to
JHK; else, recurse into non-conflicting graphs in order. Effectively, this is a depth first search (DFS)
algorithm on the solution tree; denote it as RASLre for “recursive edgewise.” Figure 1a provides
pseudo-code, and Figure 1b shows how one DFS path in the search tree unfolds. We can prove:
Theorem 3.6. The RASLre algorithm is correct and complete.

One significant drawback of RASLre is that the same graph can be constructed in many different
ways, corresponding to different orders of edge addition; the search tree is actually a search lat-

3For set B of positive integers with gcd(B) = 1, nF is the max integer with nF 6=
∑b

i=1 αiBi for αi ≥ 0.
4This check requires at most min(eu, eH) + 1 (fast) operations, where eu, eH are the number of edges in

Gu,H, respectively. This equality check occurs relatively rarely, since Gu andH must be non-conflicting.

3



Algorithm RecursiveEqClass
Input: H
Output: JHK

1 initialize empty graph G and set S

2 begin EdgeAdder G∗,H, L
3 if L has elements then
4 forall the edges in L do
5 if edge creates a conflict then
6 remove it from L
7 if L has elements then
8 forall the edges in L do
9 add the edge to G∗

10 if ∃G ∈ {(G∗)u} s.t. G = H then
11 add G∗ to S
12 EdgeAdder G∗,H, L \ the edge
13 remove the edge from G∗

14 put all n2 edges into list L
15 EdgeAdder(G,H, L)
16 return S

a: RASLre algorithm

1

1

2

2 3

3 3

1

1

2

1

3

2

1

3

2

2

3
1

23

1

1

2

2 3

3 3

1

1

2

1

3

2

1

3

2

2

3

1

23

3

1

1

2

1

3

2

1

3

2

2

3

1

2

1

3

2

1

3

2

2

3

1

23

1

23

3

2

2

3

1

23

candidate edges

constructed graph

no more non-conflicting
candidates: backtrack

next edge to add

pruned conflict-inducing
candidate edges

no graph constructed
along this branch
generates H

1

23

1

23

ground
truth H

b: Branch of the search tree

Figure 1: RASLre algorithm 1a specification, and 1b search tree example

tice. The algorithm is thus unnecessarily inefficient, even when we use dynamic programming via
memoization of input graphs.

3.3 An iterative edgecentric inverse algorithm

To minimize multiple constructions of the same graph, we can use RASLie (“iterative edgewise”)
which generates, at stage i, all not-yet-eliminated G1 with exactly i edges. More precisely, at stage
0, RASLie starts with the empty graph; if H is also empty, then it adds the empty graph to JHK.
Otherwise, it moves to stage 1. In general, at stage i + 1, RASLie (a) considers each graph G1
resulting from a single edge addition to an acceptable graph at stage i; (b) rejects G1 if it conflicts
(for all u) with H; (c) otherwise keeps G1 as acceptable at i + 1; and (d) if ∃u[Gu = H], then adds
G1 to JHK. RASLie continues until there are no more edges to add (or it reaches stage n2 + 1).
Figure 2 provides the main loop (Figure 2a) and core function of RASLie (Figure 2c), as well as an
example of the number of graphs potentially considered at each stage (Figure 2b). RASLie provides
significant speed-up and memory gains over RASLre (see Figure 3).

We optimize RASLie by tracking the single edges that could possibly still be added; for example,
if a single-edge graph is rejected in stage 1, then do not consider adding that edge at other stages.
Additional conflicts can be derived analytically, further reducing the graphs to consider. In general,
absence of an edge inH implies, for the corresponding (unknown) u, absence of length u paths in all
G1 ∈ JHK. Since we do not know u, we cannot directly apply this constraint. However, lemmas 3.7
and 3.8 provide useful, special case constraints for u > 1 (implied by a single bidirected edge).
Lemma 3.7. If u > 1, then ∀V 6→ W ∈ H, G1 cannot contain any of the following paths:

1.
	

V →W ; 2.
	

V → X →W ; 3. V →
	

X →W ; 4. V → X →
	

W ; 5. V →
	

W .
Lemma 3.8. If u > 1, then ∀V 6↔W ∈ H @T [V ← T →W ] ∈ G1

3.4 An iterative loopcentric inverse algorithm

RASLie yields results in reasonable time for H with up to 8 nodes, though it is computationally
demanding. We can gain further computational advantages if we assume that H is an SCC. This
assumption is relatively innocuous, as it requires only that our time series be generated by a system
with (appropriate) feedback loops. As noted earlier, any SCC is composed of a set of simple loops,
and so we modify RASLie to iteratively add loops instead of edges; call the resulting algorithm

4



Algorithm IterativeEqClass
Input: H
Output: JHK

1 initialize empty sets S
2 init d as an empty graph and n2 edges

3 while d do
4 d, Si =

NextIterationGraphs(d,H)
5 S = S ∪ Si

6 return S

a: RASLie main algorithm

1

23

1

23

1

23

1
7
12
2

1

7

17

15

4

1

9

34

68

74

46

15

2

1

2

3

4

5

6

7

8

1

2

3

4

5

1

2

3

4

number of non-conflicting 
graphs at the iteration

iteration 
index

non-conflicting 
graphs 
histogram

run 1 run 2 run 3

RASL 
input:

b: Three runs of the algorithm

Procedure NextIterationGraphs
Input: d graph:edges structure, andH
Output: dr and set S ⊆ JHK

1 initialize empty structure dr and sets
S, Si

2 forall the graphs G in d do
3 forall the edges e in d(G) do
4 if e 6∈ G then
5 if e conflicts with G then
6 continue
7 add e to G
8 if G 6∈ Si then
9 add G to Si

10 if G conflicts with H
then

11 continue
12 if ∃G̃ ∈ {Gu} s.t. G̃ = H

then
13 add G to S
14 remove e from G
15 add non-conflicting graphs w/ edges

to dr
16 return dr, S

c: Core function of RASLie

Figure 2: RASLie algorithm (a) main loop; (b) example of graphs considered; and (c) core function.

RASLil for “iterative loopwise.” More precisely, RASLil uses the same algorithm as in Figure 2,
but successively attempts to add non-conflicting simple loops, rather than non-conflicting edges.
RASLil also incorporates the additional constraints due to lemmas 3.7 and 3.8.

Figure 3: Run-time comparison.

RASLil is surprisingly much faster than RASLie even though, for
n nodes, there are

∑n
i=0

(
n
i

)
(i−1)! simple loops (compared to n2

edges). The key is that introducing a single simple loop induces
multiple constraints simultaneously, and so conflicting graphs are
discovered at a much earlier stage. As a result, RASLil checks
many fewer graphs in practice. For example, consider the G1
in Figure 1, with corresponding H for u = 3. RASLre con-
structs (not counting pruned single edges) 28,661 graphs; RASLie
constructs only 249 graphs; and RASLil considers only 47. For
u = 2, these numbers are 413, 44, and 7 respectively. Unsurpris-
ingly, these differences in numbers of examined graphs translate
directly into wall clock time differences (Figure 3).

4 Results
All three RASL algorithms take a measurement timescale graphH as input. They are therefore com-
patible with any structure learning algorithm that outputs a measurement timescale graph, whether
Structural Vector Autoregression (SVAR) [11], direct Dynamic Bayes Net search [12], or modifica-
tions of standard causal structure learning algorithms such as PC [1, 13] and GES [14]. The problem
of learning a measurement timescale graph is a very hard one, but is also not our primary focus here.
Instead, we focus on the performance of the novel RASL algorithms.

First, we abstract away from learning measurement timescale structure and assume that the correctH
is provided as input. For these simulated graphs, we focus on SCCs, which are the most scientifically
interesting cases. For simplicity (and because within-SCC structure can be learned in parallel for a
complex H [9]), we employ single-SCC graphs. To generate random SCCs, we (i) build a single
simple loop over n nodes, and (ii) uniformly sample from the other n(n − 1) possible edges until

5



we reach the specified density (i.e., proportion of the n2 total possible edges). We employ density
in order to measure graph complexity in an (approximately) n-independent way.

Figure 4: Run-time behavior.

We can improve the runtime speed of RASLre using mem-
oization, though it is then memory-constrained for n ≥ 6.
Figure 3 provides the wall-clock running times for all
three RASL algorithms applied to 100 random 5-node
graphs at each of three densities. This graph substanti-
ates our earlier claims that RASLil is faster than RASLie,
which is faster than RASLre. In fact, each is at least an
order of magnitude faster than the previous one.

RASLre would take over a year on the most difficult prob-
lems, so we focus exclusively on RASLil. Unsurpris-
ingly, run-time complexity of all RASL algorithms de-
pends on the density of H. For each of three density val-
ues (20%, 25%, 30%), we generated 100 random 6-node
SCCs, which were then undersampled at rates 2, 3, and 4
before being provided as input to RASLil. Figure 4 sum-
marizes wall clock computation time as a function of H’s
density, with different plots based on density of G1 and
undersampling rate. We also show three examples of H
with a range of computation runtime. Unsurprisingly, the
most difficult H is quite dense; H with densities below
50% typically require less than one minute.

4.1 Equivalence classes

We first use RASLil to determine JHK size and composition for varying H; that is, we explore
the degree of underdetermination produced by undersampling. The worst-case underdetermination
occurs if H is a super-clique with every possible edge: ∀X,Y [X → Y & X ↔ Y ]. Any SCC
with gcd(LS) = 1 becomes a super-clique as u → ∞ [9], so JHK contains all such graphs for
super-cliqueH. We thus note whenH is a super-clique, rather than computing the size of JHK.

20% 25% 30%25% 30% 35% 40% 45% 50%

1 2 4 >1000 superclique density density

5-node graphs 6-node graphs

u=
2

u=
3

u=
4

Figure 5: Size of equivalence classes for 100 random SCCs at each density and u ∈ {2, 3, 4}.

6



Figure 6: Size of equivalence classes for larger graphs n ∈ 7, 8, 10 for u ∈ 2, 3

Figures 5 and 6 plot equivalence class size as a function of both G1 density and the true under-
sampling rate. For each n and density, we (i) generated 100 random G1; (ii) undersampled each at
indicated u; (iii) passed Gu = H to RASLil; and (iv) computed the size of JHK. Interestingly, JHK
is typically quite small, sometimes even a singleton. For example, 5-node graphs at u = 2 typically
have singleton JHK up to 40% G1 density. Even 10-node graphs often have a singleton JHK (though
with relatively sparse G1). Increased undersampling and density both clearly worsen underdetermi-
nation, but often not intractably so, particularly since even nonsingleton JHK can be valuable if they
permit post hoc inspection or analysis.

2 3 4 5 6 7 8 9 10 11

5-node 25% edge density graphs ...equivalence class size S.C.

undersampling rate
Figure 7: Effect of the undersampling rate on equivalence class size.

To focus on the impact of undersampling, we generated 100 random 5-node SCCs with 25% density,
each of which was undersampled for u ∈ {2, . . . , 11}. Figure 7 plots the size of JHK as a function
of u for these graphs. For u ≤ 4, singleton JHK still dominate. Interestingly, even u = 11 still yields
some non-supercliqueH.

25% 30% 35% 40% 45% 50% 20% 25% 30%

...

rate

u=2

u=3

u=4

5-node graphs 6-node graphs

Figure 8: Distribution of u for Gu = H for G1 ∈ JHK for 5- and 6-node graphs

Finally, G1 ∈ JHK iff ∃u[Gu = H], but the appropriate u need not be the same for all members
of JHK. Figure 8 plots the percentages of u-values appropriate for each G1 ∈ JHK, for the H from
Figure 5. If actually utrue = 2, then almost all G1 ∈ JHK are because of G2; there are rarely
G1 ∈ JHK due to u > 2. If actually utrue > 2, though, then many G1 ∈ JHK are due to Gu where
u 6= utrue. As density and utrue increase, there is increased underdetermination in both G1 and u.

4.2 Synthetic data

7



Figure 9: The estimation and search errors on syn-
thetic data: 6-node graphs, u = 2, 20 per density.

In practice, we typically must learn H struc-
ture from finite sample data. As noted ear-
lier, there are many algorithms for learning
H, as it is a measurement timescale struc-
ture (though small modifications are required
to learn bidirected edges). In pilot testing,
we found that structural vector autoregressive
(SVAR) model [11] optimization provided the
most accurate and stable solutions forH for our
simulation regime. We thus employ the SVAR
procedure here, though we note that other mea-
surement timescale learning algorithms might
work better in different domains.

To test the two-step procedure—SVAR learning
passed to RASLil—we generated 20 random 6-node SCCs for each density in {25%, 30%, 35%}.
For each random graph, we generated a random transition matrix A by sampling weights for the
non-zero elements of the adjacency matrix, and controlling system stability (by keeping the maximal
eigenvalue at or below 1). We then generated time series data using a vector auto-regressive (VAR)
model [11] with A and random noise (σ = 1). To simulate undersampling, datapoints were removed
to yield u = 2. SVAR optimization on the resulting time series yielded a candidateH that was passed
to RASLil to obtain JHK.

The space of possible H is a factor of
(
n
2

)
larger than the space of possible G1, and so SVAR

optimization can return anH such that JHK = ∅. If RASLil returns ∅, then we rerun it on allH∗ that
result from a single edge addition or deletion onH. If RASLil returns ∅ for all of those graphs, then
we consider the H∗ that result from two changes to H, then three changes. This search through the
3-step Hamming neighborhood ofH essentially always finds anH∗ with JH∗K 6= ∅.
Figure 9 shows the results of the two-step process, where algorithm output is evaluated by two
error-types: omission error: the number of omitted edges normalized to the total number of edges
in the ground truth; comission error: number of edges not present in the ground truth normalized
to the total possible edges minus the number of those present in the ground truth. We also plot
the estimation errors of SVAR (on the undersampled data) to capture the dependence of RASLil
estimation errors on estimation errors for H. Interestingly, RASLil does not significantly increase
the error rates over those produced by the SVAR estimation. In fact, we find the contrary (similarly
to [6]): the requirement to use anH that could be generated by some undersampled G1 functions as
a regularization constraint that corrects for some SVAR estimation errors.

5 Conclusion

Time series data are widespread in many scientific domains, but if the measurement and system
timescales differ, then we can make significant causal inference errors [9, 15]. Despite this potential
for numerous errors, there have been only limited attempts to address this problem [6, 7], and even
those methods required strong assumptions about the undersample rate.

We here provided the first causal inference algorithms that can reliably learn causal structure from
time series data when the system and measurement timescales diverge to an unknown degree. The
RASL algorithms are complex, but not restricted to toy problems. We also showed that underde-
termination of G1 is sometimes minimal, given the right methods. JHK was often small; substantial
system timescale causal structure could be learned from undersampled measurement timescale data.
Significant open problems remain, such as more efficient methods whenH has JHK = ∅. This paper
has, however, expanded our causal inference “toolbox” to include cases of unknown undersampling.

Acknowledgments

SP & DD contributed equally. This work was supported by awards NIH R01EB005846 (SP); NSF
IIS-1318759 (SP); NSF IIS-1318815 (DD); & NIH U54HG008540 (DD) (from the National Hu-
man Genome Research Institute through funds provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative). The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

8



References

[1] A. Moneta, N. Chlaß, D. Entner, and P. Hoyer. Causal search in structural vector autoregressive models.
In Journal of Machine Learning Research: Workshop and Conference Proceedings, Causality in Time
Series (Proc. NIPS2009 Mini-Symposium on Causality in Time Series), volume 12, pages 95–114, 2011.

[2] C.W.J. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econo-
metrica: Journal of the Econometric Society, pages 424–438, 1969.

[3] B. Thiesson, D. Chickering, D. Heckerman, and C. Meek. Arma time-series modeling with graphical
models. In Proceedings of the Twentieth Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-04), pages 552–560, Arlington, Virginia, 2004. AUAI Press.

[4] Mark Voortman, Denver Dash, and Marek Druzdzel. Learning why things change: The difference-based
causality learner. In Proceedings of the Twenty-Sixth Annual Conference on Uncertainty in Artificial
Intelligence (UAI), pages 641–650, Corvallis, Oregon, 2010. AUAI Press.

[5] Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the structure of dynamic probabilistic net-
works. In 15th Annual Conference on Uncertainty in Artificial Intelligence, pages 139–147, San Fran-
cisco, 1999. Morgan Kaufmann.

[6] Sergey Plis, David Danks, and Jianyu Yang. Mesochronal structure learning. In Proceedings of the
Thirty-First Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-15), Corvallis,
Oregon, 2015. AUAI Press.

[7] Mingming Gong, Kun Zhang, Bernhard Schoelkopf, Dacheng Tao, and Philipp Geiger. Discovering
temporal causal relations from subsampled data. In Proc. ICML, pages 1898–1906, 2015.

[8] T. Richardson and P. Spirtes. Ancestral graph markov models. The Annals of Statistics, 30(4):962–1030,
2002.

[9] David Danks and Sergey Plis. Learning causal structure from undersampled time series. In JMLR:
Workshop and Conference Proceedings, volume 1, pages 1–10, 2013.

[10] Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on Computing,
4(1):77–84, 1975.

[11] Helmut Lütkepohl. New introduction to multiple time series analysis. Springer Science & Business
Media, 2007.

[12] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC
Berkeley, 2002.

[13] Clark Glymour, Peter Spirtes, and Richard Scheines. Causal inference. In Erkenntnis Orientated: A
Centennial Volume for Rudolf Carnap and Hans Reichenbach, pages 151–189. Springer, 1991.

[14] David Maxwell Chickering. Optimal structure identification with greedy search. The Journal of Machine
Learning Research, 3:507–554, 2003.

[15] Anil K Seth, Paul Chorley, and Lionel C Barnett. Granger causality analysis of fmri bold signals is
invariant to hemodynamic convolution but not downsampling. Neuroimage, 65:540–555, 2013.

9


	Introduction
	Representation and Formalism
	Algorithms
	Nonparametric Forward Inference
	A recursive edgewise inverse algorithm
	An iterative edgecentric inverse algorithm
	An iterative loopcentric inverse algorithm

	Results
	Equivalence classes
	Synthetic data

	Conclusion

