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1. A plethora of probabilistic models 

The world is a fundamentally noisy and variable place: few events must occur; our measurements 

are rarely perfectly accurate; and relations are almost never deterministic in nature. Instead, there is 

uncertainty and error of various types in all our experiences, as shown by just the slightest reflection 

on everyday life. Sometimes, caffeine helps me to be more alert, but not always. Sometimes, my dog 

barks at strangers, but not always. Nonetheless, cognitive systems (including people) must be able to 

learn and reason appropriately despite this ineliminable noise and uncertainty. And in addition to 

variability in our experiences, human behavior is itself noisy and uncertain; people do not (and often 

should not) act identically in seemingly identical situations or contexts. Computational models of 

human cognition must have some way to handle all of the noise, uncertainty, and variability; many 

do so with probabilities, as the probability calculus is a standard computational framework for 

capturing and working with noise and uncertainty, whether in the world or the reasoner.1 As one 

illustrative example, almost all theories of category judgments (such as “Is this a dog?”) are 

probabilistic in nature: they allow for uncertainty in both the world—the same observation might 

sometimes be a dog, sometimes a wolf—and in the human categorizer—the same observation can 

probabilistically yield one of several possible judgments.  

Although probabilities might be a standard tool for a computational cognitive model to capture 

noise and uncertainty, they nonetheless raise significant challenges for explanation and prediction. 

                                                
1 Probabilities are not the only way to address this issue¾fuzzy sets (Zadeh, 1965) are another 
representational framework¾but we focus on probabilistic models for reasons of space. 



 

 

At a high level, the core underlying issue is that probabilistic models do not provide specific 

predictions for single cases or particular behaviors; instead, they only provide predictions about 

(features of) collections of behaviors. Almost any sequence of events is consistent with almost any 

probability distribution, although it might be highly improbable, and so our explanations and 

predictions do not operate in the usual ways. Instead, we need to rethink the explanations and 

predictions that these models provide. In this chapter, we consider these issues, as well as some of 

the novel benefits and advantages that probabilistic cognitive models can potentially provide beyond 

possible descriptive adequacy. Because the focus here will be on more conceptual issues, there will 

be few technical details. There are many useful introductions available elsewhere for readers 

interested in the precise mathematical formulations of probabilistic models in general (Koller & 

Friedman, 2009; Ross, 2009), and probabilistic cognitive models in particular (Chater, Tenenbaum, 

& Yuille, 2006; Perfors, Tenenbaum, Griffiths, & Xu, 2011). In addition, we will focus on cognitive 

models, rather than neurocomputational ones. Although many models of neural phenomena are 

probabilistic in nature (e.g., Doya, Ishii, Pouget, & Rao, 2007; Ganguli & Simoncelli, 2014), we will 

restrict our attention to more cognitive models (though many of the observations apply with minor 

adjustments to neurocomputational models).2 

At a high level, probabilities can be incorporated into a computational cognitive model in two 

different, not mutually exclusive, ways. First, representations in the cognitive system can include or 

employ probabilities, where we take a very broad view of the notion of “representation.” Any 

cognitive system must encode, whether explicitly or implicitly, key information about its 

environment, and these encodings will frequently involve probabilities to capture noise and 

uncertainty about the surrounding environments and contexts. For example, representations of 

                                                
2 We will also largely ignore debates about whether probabilities are subjective degrees of belief, 
physical propensities, limiting relative frequencies, or something else. In context, it is almost always 
clear how the probabilities are intended in these cognitive models. 



 

 

causal structure are often modeled as probabilistic (causal) graphical models (Danks, 2014; Griffiths 

& Tenenbaum, 2005), which explicitly use a joint probability distribution to represent the noisy 

causal relations in the world. Or some Bayesian cognitive models represent theoretical knowledge as 

distinct hypotheses (perhaps probabilistic, perhaps deterministic) with probabilities that encode 

strength of belief (Griffiths, Kemp, & Tenenbaum, 2008; Perfors, et al., 2011). A more implicit use 

of probabilities can be found in exemplar theories of categorization. These theories represent a 

category by a set of (definite, non-probabilistic) previously observed instances, and so appear to be 

non-probabilistic. However, those exemplars (plus a similarity metric) implicitly encode the 

probability of observing various types of individuals (Ashby & Maddox, 1993); that is, these 

categories actually correspond to probability distributions, even though they are not typically written 

in that way. In all of these cases, the cognitive model encodes or represents the world as a 

fundamentally noisy place; probabilities here are used to capture indeterminism in the environment, 

at least from our perspective. 

Second, probabilities can be used in a computational cognitive model to capture noise and 

indeterminism in the cognitive agent herself. Experience, observations, and context rarely fully 

determine people’s cognitive activity, at least at the level of our cognitive models. For example, our 

choices between two similar options will exhibit a degree of noise: given seemingly the same choice, 

we will sometimes pick option A and other times option B. Similar indeterminacy can be found in 

many other cognitive processes, and so our models of the agent’s cognitive processes often include 

probabilities (even when the agent’s representations are non-probabilistic in nature). In general, we 

can usefully distinguish between three types of cognitive processes, though no bright lines can 

necessarily be drawn to separate them: (i) learning; (ii) reasoning or inference; and (iii) acting or 

decision-making. A probabilistic learning process might yield different learned representations, even 

if identical observations and initial knowledge or prior beliefs are provided as inputs. A probabilistic 



 

 

reasoning process might yield different judgments or beliefs, even given identical representations 

and context as input. A probabilistic decision-making process might yield different choices, even if 

given as input identical representations, beliefs, context, and goals. In each case, identical input to 

the process can yield different outcomes, and probabilities are used to capture this indeterminism. 

Of course, probabilities can enter into a computational cognitive model at more than one place. 

For example, consider models of category acquisition and categorization—how we learn particular 

concepts, and then employ them for novel cases. In almost all cases, this cognitive process is noisy 

and indeterministic, and so should presumably involve probabilities. However, those probabilities 

can occur in representation (e.g., Rehder, 2003), learning (e.g., Love, Medin, & Gureckis, 2004), 

reasoning (e.g., Nosofsky & Palmeri, 1997), or more than one of the above (e.g., Tenenbaum & 

Griffiths, 2001). That is, we face an underdetermination problem: we know that probabilities have to 

appear somewhere, but we do not have the necessary data to determine whether they occur in 

representations, processes, or both. Often, the same behavioral phenomena can be modeled using 

(a) deterministic representations and probabilistic processes; (b) probabilistic representations and 

deterministic processes; or (c) both probabilistic representations and processes. Of course, most 

(complex) cognitive models face underdetermination challenges, but the problem here is even 

harder, as we do not even know what type of components (probabilistic vs. deterministic) should be 

employed in our model. 

This introductory section has talked about computational cognitive models as though they apply 

to particular individuals; that is, cognitive models were discussed in the context of explaining the 

cognitive processes of particular individuals. In fact, though, many of our cognitive models are 

fundamentally ambiguous about whether they describe individuals or populations. In many contexts, 

this ambiguity is innocuous, but probabilistic models are not such a context. Suppose that we 

observe variability in behavior for a group of people who have all seemingly been exposed to the 



 

 

same information (e.g., experimental stimuli in the lab). This variability could arise from everyone 

having the same probabilistic cognition, or from people having different deterministic cognition, or 

a mixture of the two. As a non-cognitive example, suppose that I flip many different coins and find 

approximately 50% heads, 50% tails. This “behavior” could arise at the population level because 

each individual coin is fair and balanced, or because half of the coins are two-headed and half two-

tailed, or because we have a mix of these two extremal possibilities. More generally, any population-

level probability distribution can be explained by probabilities within the individuals, or by 

probabilities across the individuals (or a combination). Perhaps we behave differently from one 

another because our cognition is fundamentally probabilistic, or perhaps because we have variability 

in our initial beliefs and subsequent experiences. The challenge for many of our computational 

cognitive models is that they describe average or population-level behaviors without explicitly stating 

whether the model is also an individual-level one. Often, it is implied that the models apply to 

particular individuals (not just the population), but that is frequently not explicitly stated. And in 

many cases, we lack the evidence to distinguish between the various possibilities, as we need 

repeated observations of each person in order to establish whether their particular cognition is 

probabilistic, and such repeated measures can be quite difficult and expensive to obtain. In the 

remainder of this chapter, we will see several places where this ambiguity—do the probabilities in 

the cognitive model capture within-individual or across-individual variability?—matters in the use, 

interpretation, and explanatory power of probabilistic cognitive models. 

 

2. Explanation and prediction with probabilistic models 

We begin by thinking about prediction using probabilistic models, as that is key to thinking 

about their explanatory power (as well as many other uses of probabilistic models). Importantly, 

probabilistic cognitive models will generally not predict any specific behavior at all, but rather a 



 

 

range and likelihood of possible behaviors (regardless of where the probabilities are located in the 

model). These predictions can thus be quite difficult to assess or use, precisely because they are 

logically consistent with almost anything. Almost any sequence of data will be logically consistent 

with almost any probabilistic cognitive model, though the data might be quite unlikely. We thus need 

to rethink the exact content and target of our predictions and explanations. 

It is perhaps easiest to see the issues by considering a non-cognitive example. Suppose that I am 

flipping a fair coin—that is, a coin that has a 0.5 probability of coming up heads. The predicted 

possibilities for flips of this coin include every possible sequence of heads and tails; some sequences 

might be exceptionally improbable, of course, but they are nonetheless possible. In the case of 

probabilistic cognitive models, almost any behavior will be predicted to be possible, though the 

model might predict that this behavior should be unlikely or rare. One reaction would be to 

conclude that probabilistic cognitive models are therefore untestable or useless, as they do not 

constrain the possibility space for behavior. This reaction is too quick, however, as we can instead 

shift to thinking about whether the observed behavior is likely or expected. Of course, we cannot 

test the likelihood of a single instance, and so we must also shift our focus from predicting a single 

behavior to predicting properties of sequences or collections of behaviors. This change raises anew 

the issue from the end of the previous section: if our focus is on collections of behavior, then we 

have to be very careful to distinguish between (a) collections formed from multiple behaviors by a 

single person; and (b) collections formed from behaviors by multiple people. Probabilistic cognitive 

models for (a) can be used to generate predictions for (b), but not vice versa. Hence, if our only 

observations are of type (b), then we will likely face additional underdetermination in terms of 

confirmation and plausibility. 

With this understanding of the predictions of probabilistic cognitive models in hand, we can 

turn to the explanations provided by a well-tested, well-confirmed probabilistic cognitive model. 



 

 

There are multiple explanatory virtues (as we will discuss in the next section), but we can first focus 

on the role of prediction in explanation. Predictive power is important because all theories of 

explanation hold that an explanans S should, in some sense, show why an explanandum E was 

expected, likely, inevitable, or otherwise followed naturally. Different theories of explanation provide 

different ways to explicate the idea of “following naturally,” but all of those explications are 

connected in some way with predictive power. As a result, the approach that we employ for 

prediction in probabilistic cognitive models must also apply to the explanatory power of those 

models. In particular, probabilistic models cannot provide the same types of explanations, or same 

explanatory power, as deterministic cognitive models.  

Consider some probabilistic cognitive model M and any arbitrary, though relevant, behavior B. 

As long as M assigns non-zero probability to B, then M can always give an “explanation” of B: the 

fact that M implies B is possible means that there is some sequence in M that results in B, and this 

sequence shows how B could have been produced (if M were true). But this means that the mere 

existence of an M-explanation is quite uninformative, since we know a priori that we will almost 

certainly be able to provide a story about how B could have been produced, regardless of what B 

turns out to be. And if a theory can “explain” any possible data, then it arguably provides no 

explanation at all. One natural response is to argue that M provides an explanation only if it shows 

that B is highly likely or highly probable. The problem, though, is that improbable things sometimes 

happen, and so this constraint implies that we will sometimes have no explanation for some B (i.e., 

the improbable ones). For example, a sequence of ten heads when flipping a fair coin is highly 

improbable—it will happen only around 0.1% of the time when one does ten coin flips—but if it 

does happen, then it would quite strange to say that we have no explanation at all.3 More generally, 

                                                
3 In fact, any specific sequence of heads and tails will happen only 0.1% of the time when one flips a 
coin ten times, so we would actually have to say that we cannot provide an explanation for any 
 



 

 

many probabilistic cognitive models predict that any particular, specific behavior B will be relatively 

improbable, even though they might well be able to provide a causal or mechanistic account of how 

B was generated.  

At this point, there are two natural moves that one can make. First, we can change our 

understanding of the behavior to be explained. In the coin flipping case, any particular sequence is 

improbable, but sequences with certain shared features might be much more probable; for example, 

a sequence with five heads and five tails, regardless of order, occurs 24.6% of the time. Hence, we 

can perhaps save the requirement that an M-explanation should show how B is probable (or at least, 

not too improbable) by focusing on particular features of B, rather than B exactly. In the case of 

probabilistic cognitive models, this move typically requires shifting from explanations of a particular 

behavior B to explanations of collections of behaviors B1, …, Bn. That is, M no longer provides an 

explanation of how a specific behavior, decision, or judgment resulted, but instead explains how 

features of a distribution of behaviors results, whether within a single person over time, or across a 

number of different people. These explanations of higher-level behavioral patterns are different than 

what we might have expected, but can be exactly what we want and need in certain contexts.4 For 

example, if I am trying to understand causal reasoning, then I do not necessarily need to know how 

each particular causal judgment is generated, but only how they are usually generated, or the 

variability in how they can be generated, or the factors that are causally and/or explanatorily relevant 

to variation in those judgments. Individual people can be idiosyncratic in many different ways, and it 

might simply be unreasonable to think that we could give satisfactory explanations for how each 

specific behavior is generated; human cognition might simply be too complex a system. At the same 

                                                
particular sequence, though as noted below, we could arguably explain certain properties of the 
sequence (e.g., proportion of heads being greater than, say, 0.4). 
4 As a non-cognitive example, note that this is exactly what we do in most thermodynamic models: 
we focus on predictions and explanations of properties of the distribution of particle locations, 
rather than specific particle locations. 



 

 

time, we need to recognize that explanations of group-level phenomena or collections of behaviors 

(including those of the same person at different points in time) are importantly different from those 

that explain specific individual behaviors. We have changed our target, and so our explanations are 

arguably weaker in important ways. For example, they no longer explain any particular cognitive or 

behavioral event. 

A second response is to shift away from asking whether M makes B probable or not, and instead 

focus on the sequence of events identified by M in its purported explanation of B. That is, we can 

require our M-explanations to provide an account of what actually happened to result in B. There 

are many debates about whether cognitive and neuroscientific explanations must be causal, 

mechanistic, or have some other shared feature (e.g., Craver, 2007; Kaplan & Craver, 2011; Lange, 

2013; Ross, 2015). However, we do not need to engage with those debates here, as all of the parties 

agree that explanations identify a particular sequence of events that led to B. Those debates are 

about whether there are further constraints on that sequence, such as requiring it to be a causal 

sequence or mechanism. Regardless of that question, B presumably resulted from a sequence of 

events, and identification of that sequence provides one kind of explanation. Thus, a probabilistic M 

can perhaps provide a non-probabilistic explanation of B. Unfortunately, as noted earlier, we know a 

priori that we will almost always be able to postulate some sequence of events in M that would lead to 

B. The key question for explanations of this type is whether the postulated sequence actually 

occurred, and that determination requires that we observe much more than just B. This second 

strategy—shift to focusing on actual sequences of events—might be the right one in some cases, but 

comes at a cost: we only have grounds to believe those M-explanations about how B actually 

resulted if we have much more information about the particular case. The mere observation of B is 

clearly not sufficient, since we can almost always generate a “how possibly” M-explanation.  



 

 

The overall message is that probabilistic cognitive models generally provide explanations of how 

some behavior resulted only if we (i) weaken our expectations by shifting to features of collections 

of behavior (by the same or different individuals); or (ii) strengthen our measurement capabilities by 

observing intermediate states or events that culminated in the behavior. Given this choice, we might 

instead pursue a completely different response by changing the desired type of explanation to 

account for why the behavior occurred (rather than how). In particular, many probabilistic cognitive 

models have been offered as “rational” or “optimal” models that can tell us why some behavior 

occurred, even if nothing can be said about how it was generated. For example, a rational model of 

categorization (Anderson, 1991; Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Tenenbaum & 

Griffiths, 2001) aspires to explain people’s category judgments by showing it to be optimally correct 

behavior. These theories do not specify the processes or structures by which these judgments were 

produced, but they can nonetheless explain why people act as they do: namely, people are trying to 

succeed at the task of categorization, and these responses are the right way to do that. The 

explanation here is analogous to what one might say when asked to explain why a calculator reads 

‘17’ when ‘8+9=’ is entered: namely, that’s the right answer, and properly functioning calculators are 

designed to give the right answer. This explanation gives us no information about how the calculator 

functions, but it nonetheless can explain the calculator’s “behavior.” Of course, human cognition is 

not necessarily “designed” like a calculator is, and so we must provide additional information 

(Danks, 2008). Nonetheless, this different type of explanation—a why-explanation rather than how-

explanation—is another response to the difficulty of explaining human behavior. 

Why-explanations are not restricted to probabilistic cognitive models, but they are particularly 

common for those models, partly for reasons that we explore in the next section. For now, we focus 

on the requirements and explanatory power of these why-explanations. To have a full why-

explanation, we need to show not only that the behavior is optimal for human cognizers in these 



 

 

environments, but also that people act in this way because the behavior is optimal (Danks, 2008). The 

second requirement is crucial, as optimality alone does not tell us why the behavior occurred if, in 

fact, that optimality played no role in leading to the behavior. In the calculator case, the why-

explanation depends partly on the calculator being correctly designed; a similar claim is required for 

why-explanations of human behavior. Of course, we do not need to have a full causal story about 

the role of past (optimal) performance. For example, it is sufficient to show that there are 

ontogenetic or phylogenetic pressures that will push people to act more optimally. And given a 

demonstration of optimality and its cognitive relevance, then not only do we arguably know why 

some behavior occurred, but we can also predict what would happen if the environment or task 

shifted (assuming the individual had time to learn and adapt).  

This why-explanation is limited in certain important ways. For example, and in contrast with a 

causal-mechanical how-explanation, we can make only limited predictions about what might happen 

if the cognitive system is damaged or altered in some way. We can presumably expect that it will be 

different in some way, but we cannot predict how exactly it will change, nor whether it will be able to 

recover or adapt to this damage. We also do not avoid the problem of predicting single cases: if the 

optimal behavior is to act probabilistically (as in, for example, certain foraging situations), then we 

will still have to shift our explanandum to properties of collections of behaviors. Nonetheless, these 

why-explanations do represent a qualitatively different type of explanation from the usual causal-

mechanical-computational ones found in cognitive science. 

 

3. Explanation beyond prediction 

One key feature of explanations is that they show why or how something occurred, but there are 

plausibly other explanatory virtues or functions. In particular, explanations are often thought to play 

a unifying role (Kitcher, 1981), though the nature of this unification is not always clear. In the case 



 

 

of probabilistic models, the unification function is often touted as an important aspect that speaks in 

favor of the models. These arguments all begin with the observation with which this chapter started: 

the world is a fundamentally noisy and uncertain place (from our perspective). The proponents of 

probabilistic models then typically argue that the probability calculus, or Bayesian updating, or some 

other probabilistic model is the normatively correct way to handle noise and uncertainty (e.g., 

Chater, et al., 2006; Chater & Oaksford, 2008; Oaksford & Chater, 2007). Thus, these arguments 

claim that probabilistic cognitive models provide explanatory unification in virtue of being the 

(purported) correct way to handle a world like ours. The shared language of probabilities in all of 

these models of diverse cognitive phenomena provides a further unification: they are all instances of 

probabilistic inference, reasoning, specification, etc., and so these cognitive processes and behaviors 

are just different manifestations of the same type of theoretical “machinery” (leaving aside the 

question of whether they share any neural “machinery”).  

There is a sense in which the conclusion of these arguments is correct, as our cognition surely 

must be robust in the face of various types of noise, uncertainty, or indeterminism. It would be 

bizarre if our cognitive processes had no way of representing and responding (perhaps implicitly) to 

this variability. And to the extent that we think that different cognitive phenomena do involve 

similar types of processes or representations, we should favor model-types that are widely successful. 

So to the extent that probabilistic cognitive models have significant, widespread descriptive 

explanatory success, then we might hope that we can develop an argument that future probabilistic 

models should be judged as more plausible. However, this unificationist argument makes no 

reference to rationality or optimality claims, and so we must provide further argument that 

rationality or optimality considerations provide a further (explanatory) reason to favor probabilistic 

cognitive models, rather than ones based in other non-deterministic processes.  



 

 

The standard arguments for why-explanations in probabilistic cognitive models depend on the 

claim that all rational, optimal, or normative models must be probabilistic; in particular, they must 

satisfy the probability calculus. This claim justifies assertions that probabilistic models are the 

“correct” or “appropriate” way to handle uncertainty, which thereby privilege those models (when 

they are approximately descriptively correct). There are many different defenses of this claim in the 

literature (many collected in Oaksford & Chater, 2007). For example, Dutch book arguments show 

that failing to conform to the probability calculus can lead to decisions that are individually sensible 

(from the decision-maker’s point of view) but are jointly guaranteed to end badly. Or convergence 

arguments show that no method of changing one’s beliefs can consistently do better than if one 

changes strengths of belief according to the probability calculus. Many of these arguments are 

deployed specifically in favor of Bayesian models—that is, models in which belief change or 

inference occurs through conditionalization as given by Bayes’s Rule—but they often are 

appropriate for probabilistic models more generally. The details also obviously can matter in these 

arguments for the crucial claim, but the key here is simply that they all aim to establish strong, 

perhaps even identity, relations between the class of probabilistic models and the class of 

rational/optimal models. 

However, there is an issue with the way that these arguments are used. In every case, the 

arguments show (at best) that probabilistic models, reasoning, or updating are one good way to 

handle uncertainty, not that they are the only or uniquely good (or rational, or optimal, or correct) way 

(Eberhardt & Danks, 2011). More specifically, “probabilistic” and “rational” are theoretically 

independent notions: one can have probabilistic, non-rational models, and also non-probabilistic, 

rational models. Although probabilistic models are often rational or optimal, they are not privileged 

in that way. As just one example, consider the cognitive task of learning from experience. There 

have been numerous arguments that Bayesian conditionalization is the rational way to learn—that is, 



 

 

given a new piece of evidence, the changes in one’s probabilities over various options (i.e., learning 

from a probabilistic perspective) should change in accordance with Bayes’s Rule (Teller, 1973, 1976). 

The normative force of these arguments arises from Bayesian conditionalization ensuring 

probabilistic coherence over time, or consistency of plans in light of new information, or 

convergence to the truth (when it is learnable), or other such desirable features. But in every case, 

there are alternative methods—sometimes, infinitely many such methods—that also satisfy that 

desideratum (Douven, 1999; Eberhardt & Danks, 2011). Bayesian conditionalization is normatively 

defensible, but not uniquely normatively privileged, compared to other methods for shifting belief, 

or other (often more qualitative) representations of uncertainty.  

This story repeats itself for essentially every argument in favor of the rationality of probabilistic 

models and methods: they are normatively defensible, but not normatively unique. Moreover, 

explanatory unification (of the sort proposed at the beginning of this section) depends on 

uniqueness, not simply defensibility. Probabilistic models and methods were argued to provide some 

extra explanatory power that goes beyond “mere” descriptive adequacy, but the additional 

explanatory power depends on the number of alternatives. If probabilistic models and methods are 

only one of many possibilities, then we have only a very weak normative explanation of why the 

brain/mind employs them (if it does). We cannot claim that these models are inevitable because “a 

rational agent couldn’t have done otherwise,” precisely because there are many different things that a 

rational agent could do instead. That is, the question “Why probabilistic models?” cannot be 

answered with “Because they are inevitable for rational agents,” despite suggestions to the contrary 

from proponents of those models. 

Despite these issues, there is still an important sense in which probabilistic models and methods 

can provide a type of explanatory unification, though one grounded in their descriptive rather than 

normative virtues. These theories employ a common template or schema for the specification of the 



 

 

model, methods, and techniques (Danks, 2014, ch. 8). We can thus understand the mind as 

consisting of many distinct instantiations of the same underlying type of representation or process, 

such as joint probability distributions or Bayesian updating processes (Colombo & Hartmann, 2017). 

To the extent that we expect there to be similarities within the mind, the shared schema of a 

probabilistic method or model implies that the collection of probabilistic models has greater 

explanatory power than the “sum” of the individual model’s explanatory powers. That is, the shared 

probabilistic schema implies mutually reinforcing support,5 at least to the extent that we expect that 

different aspects of the mind/brain should have some degree of similarity. One might worry about 

this last qualifier, as there are many arguments that the mind/brain should and does exhibit 

substantial modularity, and we might have no particular reason to think that modules share a model- 

or method-schema (Carruthers, 2006; Fodor, 1983; Tooby & Cosmides, 1992). However, we also 

have no reason to think that modules cannot have a shared schema, as apparently module-specific 

phenomena can instead arise because of distinct prior knowledge, experience, or expectations 

(Samuels, 1998). General arguments for modularity do not speak directly against “schema-based” 

explanatory unification. We thus find that probabilistic models do arguably have some (potential) 

additional explanatory power if they are as widespread as proponents claim, but it is based in their 

descriptive similarity, not a shared normative base. 

 

4. Conclusion 

We live in a noisy, uncertain world, and probabilistic models, methods, and reasoning are a 

natural way to tackle such environments. We should thus be unsurprised that probabilistic models 

are ubiquitous in modern cognitive science: they are found in models of essentially every area of the 

mind/brain, from very early perception (Ganguli & Simoncelli, 2014; Lee & Mumford, 2003), to 

                                                
5 This interdependence can be made precise in terms of intertheoretic constraints (Danks, 2014). 



 

 

both simple low-level (Courville, Daw, & Touretzky, 2006; Xu & Tenenbaum, 2007) and complex 

high-level (Chater, et al., 2006; Oaksford & Chater, 2007) cognition, to motor activity (Kording & 

Wolpert, 2006; Wolpert & Kawato, 1998). They have been employed to understand even 

phenomena that are sometimes thought to be non-computational, such as emotions (Seth, 2013). At 

the same time, there are very real challenges in understanding the explanations that such models and 

methods provide. Almost any behavior is consistent with almost any (plausible) probabilistic 

cognitive model, and so many of the standard theories of prediction and explanation do not apply. 

Instead, we must shift how we think about explanation with these models. Instead of explaining a 

single particular instance, we can: explain features of the collections of phenomena (in individuals or 

groups); or collect additional measures that ground the particular explanation; or shift to providing 

why-explanations rather than how-explanations. Each of these strategies has been employed with 

probabilistic cognitive models, thereby enabling widespread use of these powerful types of models. 
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