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Causal cognition is a key part of human learning, reasoning, and decision-making. In

particular, people are capable of learning causal relations from data, and then reasoning

and planning using those cognitive representations. While there has been significant

normative work on the causal structures that ought to be learned from evidence, there

has been relatively little on the functional forms that should (normatively) be used or

learned for those qualitative causal relations. Moreover, empirical research on causal

inference—learning causal relations from observations and interventions—has found

support for multiple different functional forms for causal connections. This paper argues

that a combination of conceptual and mathematical constraints leads to a privileged

(default) functional form for causal relations. This privileged function is shown to provide

a theoretical unification of the widely-used noisy-OR/AND models and linear models,

thereby showing how they are complementary rather than competing. This unification

thus helps to explain the diverse empirical results, as these different functional forms are

“merely” special cases of the more general, more privileged function.

Keywords: causal inference, causal reasoning, functional form, linear model, Noisy-OR

INTRODUCTION

Causation forms a core concept and framework for much of human cognition. We perceive causal
relations in the world, such as a child pushing a block across the floor. We infer causal connections
on the basis of (statistical) evidence across multiple experiments, such as overconsumption of
caffeine producing muscle tremors. We make predictions on the basis of this causal knowledge,
such as the prediction from observations of people wearing sweaters that the roads might be icy.
We evaluate possible actions and make decisions on the basis of our causal beliefs, such as the
conclusion that studying is a better way to achieve a good test score than wishful thinking. Causal
cognition is obviously not the entirety of human cognition, but it is equally obviously a fundamental
part of our mental lives (Sloman, 2005).

Given the importance of causal cognition, there has unsurprisingly been an enormous amount
of research on the nature of human causal representations, and the cognitive processes by which we
learn and reason with those representations. This work has been both descriptive—how do people
actually understand and reason about the causal structure of the world?—and normative—how
should people learn and use causal relations? In fact, causal cognition has arguably been one of
the areas of cognitive science that has most benefitted from the interplay between descriptive and
normative analyses (Woodward, 2012).

Consider a concrete example that we will employ throughout this paper. There are many
different causes of an individual’s heart rate at a moment in time, and people can learn and reason
about this broad causal structure. Some of these causal factors function somewhat independently of
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one another; for instance, physical exertion raises one’s heart rate
in a different way than ingestion of caffeine or other stimulants.
Nonetheless, people seem to have the ability to determine the
relevant causal relations from observations, experiments, and
other kinds of information, and then to reason coherently
about the system in the future (Danks, 2014). Their causal
knowledge and cognition reflects a relatively integrated structure
that suggests that we need to think carefully about the ways in
which these complex causal structures should be and are (at least,
by default) learned, represented, and used.

Most normative research on causal cognition has focused
on three core questions: (1) How ought people represent
causal structures? (2) How ought they learn those cognitive
representations of causal structure? (3) How ought they reason
with those cognitive representations? Answers to these questions
have almost exclusively focused on qualitative causal structure—
does C cause E? or, ought Caffeine → Heart Rate be part of the
learned structure?—where a very common answer is that much
of our qualitative causal knowledge ought to be, and probably
descriptively is, represented as (something like) a causal graphical
model (Griffiths and Tenenbaum, 2005; Holyoak and Cheng,
2011; Danks, 2014).

In contrast, normative questions about the functional form
of causal relations—what is the (mathematical) form of the
quantitative causal relationship betweenC and E?—have received
comparatively little attention. This paper aims to remedy that
gap. That is, the present paper examines whether there is a
“privileged” functional form that people ought to use as a
default when trying to learn quantitative features of various
causal relationships. At a high level, the normative argument in
this paper starts with a mathematical argument: if a cognitive
agent has certain assumptions about causation, then there is a
privileged (in a precise formal sense) functional form she ought
to use. Moreover, these assumptions are normatively sensible,
at least as a default position. Thus, we have normative grounds
to use a particular functional form when we do not have other
reasons to contradict those assumptions. Of course, this default
is defeasible and could be overridden by other knowledge, but it
provides the appropriate starting point.

Descriptively, people do appear to be able to use different
functional forms, depending on domain knowledge, data,
experience with other causal systems, and so forth (Beckers
et al., 2005; Lucas and Griffiths, 2010; Lucas et al., 2014). These
studies focused, however, on the ways in which prior experience,
domain knowledge, and biases might lead people to select one
of a small number of possible functional forms. In addition,
they were largely focused on causes and effects that can take
only a small number of values, often only two (i.e., “on” and
“off”; or “present” and “absent”; or “1” and “0”; or some similar
pair of values). In the context of our running examples, these
theories and experiments would assume thatHeart Rate can only
be “normal” or “elevated.” In contrast, we ask what functional
form ought, on normative or rational grounds, be employed as a
default when causal factors and effects can take on wider ranges
of values.

Although this normative question has received very little
attention in cognitive science, we can draw inspiration (and some

guidance) from related investigations in machine learning, and
in the philosophy and metaphysics of science. Many scientific
domains involve models of causal influences that function (at
least somewhat) independently of one another. More generally,
scientific models and theories frequently divide the world
into distinct processes (typically, causal ones) such that the
operation of one process has minimal dependence on—in the
best case, true independence1 from—other processes. Similarly,
there are normative reasons to expect human causal cognition to
assume (as a default) these kinds of quasi-independent or quasi-
modular causal relations. For instance, causal cognition would
be computationally intractable if every effect were represented as
the entangled product of many intertwined, interacting causes.
Section Solving for a Special Case uses ideas and frameworks
from machine learning and philosophy of science to make
progress on the (normative) cognitive question.

There has also been significant philosophical debate about the
metaphysical and epistemological status of what are sometimes
called causal “capacities” (Cartwright, 1989, 1999, 2007; Martin,
2008; see also Heil, 2005) or “mechanisms” (in the spirit of
Machamer et al., 2000). The basic idea is that capacities are those
causal powers that a cause C has purely by virtue of being a C;
causal capacities are “something they [the causes] can be expected
to carry with them from situation to situation” (Cartwright, 1989,
p. 145). That is, capacities inhere inC rather than arising from the
particular situation, and so their operation should be relatively
unaffected by other processes in the system. A computational
literature has developed in parallel that examines privileged
functions for these types of quasi-independent Cs. The core
question of this paper—is there a natural, privileged (default)
functional framework for human cognitive representations of
causal structures?—thus brings together strands from cognitive
science, philosophy of science, and machine learning. One
might think that there obviously could be no such privileged
representation, as “mere” quasi-independence seems too weak
for this task, but that response turns out to be mistaken. We
turn now to examining the question of a normatively privileged
(default) functional form for humans to use in causal learning
and reasoning.

SOLVING FOR A SPECIAL CASE

Binary Variables and the Noisy-OR/AND

Model
Consider the simplest case: all factors—causes C1, . . . , Cn and
the potential effect E—can be represented as binary variables,
and the Cis are all either neutral or generative (i.e., increase
the probability of E). For instance, we might have Heart Rate
as the target effect, and two distinct potential causes, Caffeine
and Exercise. Recall that a natural default is to assume some
degree of (quasi-) independence between the functioning of the
various causes. That is, the base causal strength or influence of

1This independence should not be confused with either (a) statistical

independencies that can be used to (sometimes) infer causal structures from data

(Spirtes et al., 2000); or (b) modularity of causal connections that can be separately

intervened upon (Hausman and Woodward, 1999, 2004; Cartwright, 2002).
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Ci should be representable without reference to the states of the
other variables. In particular, Ci’s qualitative impact on E should
not depend on the state or causal strength of Cj, and it should
be monotonic in Ci. Having said that, Ci’s exact quantitative
impact in a particular situation might depend partly on the
values of Cj and E (e.g., because of saturation effects), though
again, the “core” causal strength should be independent of those
values.

For this simplest case, there is a privileged mathematical
function with origins in nineteenth century mathematics.
Suppose first that we have a single generative (binary) cause C1

of the (binary) effect E, and so E occurs when (and only when)
C1 is present and C1’s causal influence is “active,” where w1 is
the strength of that capacity (in this context, the probability
that it is active). Mathematically, P(E) = w1 × δ(C1), where
δ(X) = 1 if X is present, 0 if X is absent. If we have a
second generative cause C2 of E, then E occurs when (and
only when) either C1 or C2 generates it, where the “or” is
non-exclusive. Mathematically, P(E) = w1δ(C1) + w2δ(C2) –
w1δ(C1)w2δ(C2); that is, the probability of E is just the sum of
the probabilities that it is caused by one or the other cause, minus
the probability that both caused it (since that case is “double-
counted” in the sum of the first two terms). To return to our
running example (and naming variables by their first letters),
we have the general equation P(HR=high | C, E) = wCδ(C)
+ wEδ(E) − wCδ(C)wEδ(E). If both C and E are present,
for instance, then P(HR=high | C, E) = wC + wE – wC

wE.
More generally, if we have n distinct, independent generative

causes, then there is a uniquely privileged mathematical function
for P(E) given in Equation (1) below. That is, Equation (1) is the
only equation for purely generative binary causes with distinct
causal capacities (i.e., independent causal influences) that satisfies
natural properties (Cozman, 2004) discussed further in section A
Privileged, General Mathematical Function.

P (E|C1, . . . , Cn) = 1−
∏n

i= 1
(1− wiδ (Ci)) (1)

Equation (1) corresponds mathematically to the so-called “noisy-
OR” model (Good, 1961; Kim and Pearl, 1983; Pearl, 1988;
Srinivas, 1993; Heckerman and Breese, 1994, 1996; Cheng, 1997;
Glymour, 1998; Cozman, 2004). In a noisy-OR model, E is a
logical OR-function of the different causes, but where each cause
has some probabilistic “noise” (understood instrumentally) that
can prevent it from bringing about the effect. The probability that
E occurs is thus the probability that at least one present cause has
an active capacity.

Of course, not all causes are generative; we are often interested
in causes that prevent the effect from occurring. One possibility
is that a preventive cause P might interfere with the functioning
of exactly one specific generative cause G. In that case, P has
the (mathematical) impact of reducing G’s causal strength (i.e.,
the wG value), and so we can combine P and G into a single
factor with a reduced (relative to the original wG) causal strength.

Other times, though, a preventermight impact2 E in a non-cause-
specific way by serving as a (noisy, probabilistic) “switch” that
controls whether any generative cause can be active at all. In such
cases, Ewill occur if and only if (a) at least one generative capacity
is active, and (b) none of the preventive causes’ capacities are
active.

This more complex relationship is captured by the so-called
noisy-OR/AND model given in Equation (2). In this equation,
the generative causes combine in a noisy-OR function, whose
result is then combined with a noisy-AND function for the
preventive causes (i.e., the effect occurs only if a generator is
active AND P1 is not active AND . . . Pm is not active):

P (E|C1, . . . , Cn, P1, . . . , Pm) =
∏m

j= 1
(1− wjδ

(

Pj
)

)
[

1−
∏n

i= 1
(1− wiδ(Ci)

]

(2)

This equation provides (arguably) the most natural
normative representation, when we have binary variables,
of generative and preventive causal capacities that exert
independent causal influence (Srinivas, 1993; Heckerman
and Breese, 1994, 1996; Lucas, 2005). Equation (2) also
reveals the computational simplification provided by
thinking in terms of independent causal influences: if we
have n total generative and preventive causes, then the
unrestricted probabilistic model requires 2n parameters,
but Equation (2) requires only n parameters (namely, the
w-values).

Equation (2) is normatively defensible as the unique privileged
function satisfying our natural, default assumptions about quasi-
independent binary causes and effects (Cozman, 2004). There
is also substantial descriptive evidence that humans often
preferentially represent causal systems using functions with the
form of Equation (2) (e.g., Cheng, 1997; and the references
in Holyoak and Cheng, 2011; Danks, 2014). In cognitive
science, Equation (2) is better-known as the “causal power”
or “power PC” theory (Cheng, 1997), which was explicitly
modeled on Cartwright’s (1989) philosophical theory of causal
capacities. Although the focus of the present paper is on
normatively defensible default or privileged causal functions,
it is nonetheless useful confirmation that, at least for this
simple case, many people seem to use it in experiments that
provide limited domain information. Of course, it is also the
case that many people do not seem to use this function;
we return to this issue in section Psychological (and Other)
Implications.

Although Equation (2) is mathematically and conceptually
defensible as the privileged (default) function for causal relations,
its applicability is highly restricted. There aremany cases in which
the variables are not binary, but rather have varying magnitudes
and impacts. One minimal generalization of the noisy-OR model
in Equation (1) is to allow the effect E to assume a range of values,

2There are two different ways in which a preventer could “impact” E, but they

collapse together for binary variables. We will disambiguate them in section

Resolving Ambiguities.
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typically from zero to positive infinity. This shift to real-valued E
requires functions that output (E), the expectation of E, rather
than P(E). Two different generalized functions have traditionally
been proposed (Heckerman and Breese, 1996):

noisy-MAX model : E (E) = max(wiδ (Ci))

noisy-addition model : E (E) =
∑

wiδ (Ci)

While these are each more general than the noisy-OR model of
Equation (1), they are also still highly restricted, as the causes
remain binary and there are no preventive causes. Moreover,
the fact that there are two different generalizations raises
natural questions about which, if either, is the privileged default
mathematical function for this case. We provide an answer to
that question in section A Privileged, General Mathematical
Function, but we must first clarify two key conceptual (though
not mathematical) ambiguities produced by the use of binary
variables.

Resolving Ambiguities
Mathematically speaking, binary variables are simply those
with two possible values. In practice, though, a more specific
interpretation is typically intended, particularly when using the
noisy-OR/AND model: factors can be “present” vs. “absent” or
“on” vs. “off”; capacities can be “active” vs. “inactive.” These
interpretations provide a natural value ordering, as shown by
the standard practice of mapping “present” to the value of 1
and “absent” to the value of 03. More generally, we typically
understand the “absent” or 0 value to be the lower bound of the
possible values for that variable. At the same time, the 0 value also
almost always serves as the baseline value: it is the value that E
would have if nothing influenced it. This second role of the zero
value is clear in the mathematics of the noisy-OR/AND model
(Equation 2), as P(E = 0 | all generative causes are absent) = 1.
That is, the standard model of (binary) causal capacities assumes
that absence is the appropriate “uncaused” state for E.

These two different roles for 0—lower bound and baseline
value—are conceptually distinct and empirically distinguishable.
For example, in most terrestrial environments, the baseline value
for Oxygen in Room (i.e., the value it has when represented
causes are all inactive) is “present,” not “absent.” In the standard
noisy-OR/AND model, we can only capture cases in which
the lower bound and baseline diverge by using a mathematical
trick (namely, a very strong, always-present generative cause).
A better solution would be to explicitly allow the lower bound
and baseline to diverge. For binary variables, this move does
not matter mathematically, as any model with variables whose
baseline is 1 can be translated into a model in which all baselines
are 0. If any variables are non-binary, however, then the baseline
value plays a distinct mathematical role from the lower bound.
For example, if Heart Rate can range over three values {low,

3This mapping could be reversed without any change in substantive content,

though “lower bound” and “upper bound” would need to be swapped in what

follows.

normal, elevated}, then the baseline value is no longer the lower
bound.

The multiple roles played by 0 point toward the other
important ambiguity (previously mentioned in footnote 2) in the
standard noisy-OR/AND model of causal capacities. In general,
there are two different ways to prevent E, or make E less
likely. First, the preventer could stop generative causes from
exerting their usual influence. These blockers serve to keep the
effect variable closer to its baseline value, as they (potentially)
eliminate causal influences that drive the effect away from
baseline. Preventive causes in the noisy-OR/AND model are
usually understood in this way. A second way of “preventing” is
to move E toward its lower bound. These reducers are the natural
opposite of standard generative causes, as they shift E downwards
while generators shift E upwards. The important distinction here
is whether the preventer influences the effect directly (i.e., is a
reducer), or indirectly through the elimination of other causal
influences (i.e., is a blocker).While these are conceptually distinct
types of “prevention,” they are mathematically indistinguishable
for binary variables where the baseline and lower bound are the
same.

Heart Rate provides a ready example of the difference between
reducing and blocking. Beta blockers and other anxiety-reducing
medications function as blockers, as they prevent (some of)
the normal generative causes from having any influence while
not suppressing Heart Rate below its natural baseline (for
that individual). In contrast, most anesthetics are reducers
of Heart Rate, as they actively slow the heart, potentially
even below its natural baseline, depending on exactly which
causes are active. If we model Heart Rate as simply “low” or
“high” (where “low” is the baseline), then these two different
types of drugs will appear indistinguishable. In contrast, if we
use a three-valued variable {low, normal, elevated}, then the
distinction between blockers and reducers becomes clear: the
former increase P(HR = normal), while the latter increase
P(HR= low).

These various distinctions—baseline value vs. lower bound,
and blocking vs. reducing—also show that we must clarify what
is meant by a “causal strength” wi. The standard interpretation
in the noisy-OR/AND model is that wi expresses the probability
that the causal influence or capacity is “active,” in which case it
deterministically produces the effect (unless a suitable blocker is
also active). If causes are more than binary, though, then this
“probability of activation” interpretation neglects the (presumed)
importance of the magnitude of the cause variable. In this paper,
we instead understand wi (for generators and reducers) to be the
expected change in E’s value when (a) Ci increases by one unit
from its “inactive” state, and (b) every other factor is also inactive.
That is, wi is computed by starting in the state in which no causal
factor is active, and then determining the expected change in E
whenC increases by one unit. Direct measurement ofwi might be
a challenge, as it might be difficult or impossible to force all other
causal factors to be inactive. Nonetheless, this characterization
of wi is well-defined and conceptually coherent. If all causes and
the effect are binary, then the expected change and probability of
activation interpretations of wi are mathematically identical. The
expected change interpretation, however, also naturally applies
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to systems in which some factors can take on more-than-two
values.

One potential concern about this expected change
interpretation is that, as currently stated, it assumes linearity:
causal strength can be captured by measuring the impact on
E of a one-unit increase in Ci from its baseline (when every
other factor is also at its baseline). However, this assumption
is relatively innocuous: the default assumption that the Cs are
“modular” causes of E implies that we can always independently
rescale any non-linear cause Ci (in a non-linear manner) so
that Ci

∗ is an appropriately linear cause. Having said that, all
subsequent claims still hold—albeit, in a significantly more
complicated way, including the inability to use single numbers
for causal strengths—even if we assume only that the Cs are
additive causes, not necessarily linear ones.

A PRIVILEGED, GENERAL MATHEMATICAL

FUNCTION

We now turn to the overarching topic of this paper: a general,
privileged (default) functional form for causal relations. For
mathematical tractability, we assume that each variable’s possible
values can be represented as numbers, though each variable can
have its own scale. This assumption is trivial when the variables
are binary (i.e., two-valued) and defensible for many non-binary
values, but is not always sensible (e.g., there is no privileged
way to map the value range {red, green, blue} to numbers).
Throughout, we use lower-case letters to denote the value of a
variable; for example, e is the value of the effect E. Without loss
of generality, we can assume: E’s baseline value is 0; e has a lower
bound of –L; e has an upper bound of U; and at least one of L, U
is greater than zero (else E is always zero). Note that the baseline
can be the same as the lower bound (L = 0, U > 0); same as the
upper bound (L > 0; U = 0); or a strictly intermediate value (L,
U > 0).

Three different types of causal capacities must be incorporated
into the mathematical framework: generators Gi and reducers
Rj that (probabilistically) increase and decrease the value of
E, respectively; and blockers Bk that (probabilistically) prevent
any other causal capacities from influencing E. For all three
types of causes, we represent (without loss of generality) the
“inactive” state of each cause by 0. For generators and reducers,
this assumption has the mathematically nice implication that
the influence on E when only C is active is the product of C’s
magnitude (i.e., its distance from zero) and its causal strength
(i.e., the expected change in E given that the cause increased by
one unit).

Consider the natural, default assumptions for the simplest
case in which there are only generators Gi with values gi and
strengths wi. In this situation, E can only be pushed upwards
from its baseline, and so e∈[0, U]. We are interested in the
expectation of E given the values of the causes, which is
given by a function (E) = f (x), where x is the vector of wigi
products. In a temporary abuse of notation, we will refer to
f (x) as one function, even though x could have varying lengths
(i.e., numbers of potential causes) for different causal systems.

Given our conceptual intuitions about (quasi-)independence,
causal capacities, and so forth, I contend that the following
four assumptions should hold for any default (mathematical)
representation of f (x):4

Symmetry (S): f (x) = f (xπ), where xπ is any permutation of the
values of x.
Commutativity (C): f (f (x, y), z)= f (x, f (y, z))
Associativity (A): f (. . . , x, y, z, . . . )= f (. . . f (f (x, y), z). . . ) for all
x, y, z
Determinism (D): f (x)= e is a many-one mapping

Assumption S says that the expectation of E does not
depend on the order in which the causes happen to be listed
or represented. Assumptions A and C encode the intuition
that, since the causes are (quasi-)independent, the order of
incorporation into f (x) should not matter. Thus, we need not
specify f (x), but only f (x, y), and so our uses of f (x) without
specifying the length of x were, as promised, not actually abuses
of notation. Any f (x) can be computed by repeated application of
the two-argument function; for example, f (x, y, z)= f (f (x, y), z).
Finally, assumption D encodes the idea that the expectation of E
should be the same across instances if the causes have the same
values, even though the actual value of E will almost certainly be
different across these cases.

We also have three additional, intuitive default assumptions
about f (x). First, the meaning of “baseline” implies that E should
be (expected to be) at its baseline value if all causes are inactive
(where 0 denotes the vector with 0 for all values):
No Uncaused Effects: f (0)= 0

Second, the characterization of causal strength was that it
represents the change in the expectation of E when only that
cause deviates from its inactive value. For convenience, we use
x[yi] to denote the vector x, but with yi substituted for xi. Given
that, we have:
Distinct Causal Effect: f (0[yi])= yi

Third, if every generative cause is active and at its maximal
value, then the expectation of E should presumably be at its
maximal (for this model) value. Thus, if M denotes the vector
in which every cause has its maximal value, then we should have:
Generative Accumulation: f (M)= U

Given these assumptions, we now have the following theorem
about the uniquely privileged functional form (all proofs
provided in the Appendix):

Theorem 3.1: Let f (x) = e be a function satisfying SCAD,
No Uncaused Effects, Distinct Causal Effect, and Generative
Accumulation. If f (x) is expressible as a finite polynomial5, then
uniquely f

(

x, y
)

= x+ y−
xy
U

This theorem essentially says: given quite general conditions
on how “independent” or modular causes might combine (and
an additional, weak condition), there is actually a unique way
that they must combine. Normatively, there is one function that

4These assumptions are jointly similar to those in Cozman (2004), but they apply to

non-binary variables, and are separated into distinct claims in a somewhat different

way.
5This antecedent independently implies Determinism, and so we could remove D

from the theorem. However, we retain it to preserve the parallel structure of the

subsequent Conjecture, since Smooth Accumulation does not imply D.
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we ought (mathematically) to use, given these assumptions. In
fact, we conjecture that this additional technical condition (of
representability by a finite polynomial) can likely be weakened to
a “smoothness” condition on f (x) when it is not at its boundary
points.

Smooth Accumulation: If f (x) 6= U, then for ǫ > 0,
f (x[xi+ǫ]) > f (x).

Roughly, Smooth Accumulation says that a change in any
dimension, regardless of the other variable values, should change
f (x) as long as f (x) is not yet maximal. This condition is satisfied
by finite polynomials, but is not satisfied by a function like
MAX that depends only on the largest value. We conjecture that
the “finite polynomial” condition can be weakened to Smooth
Accumulation, though the existence of a proof is currently an
open problem.

Conjecture: f
(

x, y
)

= x + y −
xy
U is the unique

function satisfying SCAD, No Uncaused Effects, Distinct
Causal Effect, Generative Accumulation, and Smooth
Accumulation.

Given the high likelihood that either the conjecture is true,
or else the “finite polynomial” condition in Theorem 3.1 can be
dropped, then we are justified in concluding that this particular
f (x, y) is the privileged causal function for two, solely generative
causes. We can then immediately derive the similarly privileged
function formultiple generative causes, as f (x) is simply the result
of repeatedly applying f (x, y), adding one more cause each time.
Since f (x) provides the expectation of E, we can usefully write this
privileged generalized function as:6

E (E) = U

[

1−
∏g

i= 1

U − wigi

U

]

Interestingly, this function is directly connected with the noisy-
OR model, as it can be understood as: (i) “normalize” E and the
causal strengths to the [0, 1] interval; (ii) use the noisy-ORmodel;
and then (iii) transform the result back to the [0, U] interval.
Of course, this function interprets the noisy-OR equations as
providing the expectation of E, rather than its (conditional)
probability.

We can use this connection with the noisy-OR model to
generalize the privileged function to include reducing causes,
naturally understood as “negative generators.” More specifically,
we treat a set of reducers Rj with values rj as generative
causes that have negative impact on the expectation, though
their “normalization” is relative to L rather than U. The
resulting expectation of E is simply the difference between these
(normalized and combined) influences:

E (E) = U

[

1−
∏g

i= 1

U − wigi

U

]

− L

[

1−
∏r

j= 1

L− wjrj

L

]

Finally, blockers Bk with values bk fill the role of preventers in
the noisy-OR/AND model of Equation (2): the (probabilistic)
activation of their causal capacities prevents the expression of

6Theorem 3.3 below shows that this equation is well-behaved even whenU =+∞.

any other causal capacities, and so they act as a probabilistic
“switch” on the previous equation. The causal strengths of the
blocking capacities are thus best understood as “increase (per unit
change in the blocker) in probability of complete blocking when
all other blockers are inactive”7. The resulting full mathematical
equation is:

E (E) =
∏b

k=1
(1− wkbk)

[

U

[

1−
∏g

i= 1

U − wigi

U

]

− L

[

1−
∏r

j= 1

L− wjrj

L

]]

(3)

We contend that Equation (3) is the privileged, default
functional form for causal relationships, as all of the relevant
assumptions, whether mathematical or conceptual, naturally
apply for cognitive agents such as humans.Moreover, many of the
functional forms that have previously been proposed as defaults
for causal relationships emerge as special cases of Equation (3),
even for cases such as U = +∞ that seemingly imply infinities
throughout Equation (3). In particular, we have the following
theorems:

Theorem 3.2: If L = 0, U = 1, and Ci ∈ {0, 1}, then Equation
(3) is the noisy-OR/ANDmodel.

Theorem 3.3: If L = –∞, U = +∞, Ci ∈ [–∞, +∞], and
there are no blockers, then Equation (3) is E (E) =

∑g
i= 1 wigi −

∑r
j= 1 wjrj.

Corollary 3.4: If L = –∞, U = +∞, Ci ∈ {0,1}, and there are
only generators, then Equation (3) is the noisy-addition model.

Theorem 3.5: If L = –∞, U = +∞, and
Ci ∈ [–∞, +∞], then Equation (3) is E (E) =
∏b

k=1 (1− wkbk)
[

∑g
i= 1 wigi −

∑r
j= 1 wjrj

]

Theorem 3.3 is particularly interesting, as it provides natural
conditions in which (the expectation of) E is a linear function
of the causal capacities. Models in which the expectation of E
is a linear function of its causes have been widely proposed
in the causal cognition literature, either directly in the form
of the 1P model (e.g., Cheng and Novick, 1992; Shanks,
1995), or indirectly through the use of associationist models
such as (Rescorla and Wagner, 1972; see also generalizations
such as Van Hamme and Wasserman, 1994) that equilibrate
at the 1P values (Danks, 2003). In all of these models, causes
combine linearly, rather than the sub-linear combination that
occurs in the noisy-OR/AND model. Theorems 3.2 and 3.3
thus show that the two dominant functional forms proposed
in the human causal cognition literature emerge as special
cases of Equation (3), depending on the values of the
variables8.

These theorems are also relevant for causal inference—
prediction and reasoning given particular known or inferred

7Note that this interpretation implies that always wkbk ≤ 1, since their product is

the probability of complete blocking if Bk is the only active blocker.
8An interesting open question is whether these theorems about E(E) could be

generalized to P(E), the actual probability distribution of E. As a promising

first step, we can prove: if there is one generative cause and the initial P(E) is

uniform over [–L, U], then the “update” equation Pnew
(

E = e
∣

∣G = g
)

= Pold(E =

U
e−wg g

U−wg g
) satisfies all of the relevant mathematical and conceptual desiderata. It is

unknown whether other results of this type can be obtained.
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causal structures. For example, given the observation that
someone has been exercising, I can infer that their heart
rate is probably elevated. Causal inference is well-studied
for the special cases of causal power and linear causal
systems, and that understanding applies straightforwardly to
Equation (3) in the relevant special case conditions. Many of
the standard phenomena of causal inference (e.g., explaining
away9) straightforwardly arise even outside of the special case
conditions, but the precise inferences that are justified for the
more generalized version of Equation (3) are an open question.

PSYCHOLOGICAL (AND OTHER)

IMPLICATIONS

Equation (3) provides a measure of unification to the noisy-
OR/AND models and linear models: despite their substantial
mathematical differences, both are special cases of the more
general, privileged functional form. That is, these results suggest
that noisy-OR/AND models and linear models actually share a
conceptual and mathematical basis; different models arise simply
based on whether the variables are binary or continuous/real-
valued. This observation suggests that people in causal learning
experiments might (descriptively) systematically shift between
the noisy-OR/AND functional form and the linear functional
form, depending on the variable value ranges. Unfortunately,
cover stories for those experiments rarely explicitly provide value
ranges, and so it is difficult to determine from current data
whether variation in assumed or inferred variable value ranges
could explain the diversity of empirical findings.

As one early-but-illustrative example, Lober and Shanks
(2000) found a mixture of functions within their experimental
participants: many seemed to assume the noisy-OR/AND (or
power PC) model, but many others assumed a linear (or 1P)
model. Their experimental cover story asked participants to
determine the causal impact of various chemical exposures on
DNA mutations. From the experimenters’ point-of-view, the
variables were all binary: animals were exposed or not; mutation
occurred or not. However, one might naturally think that some
participants interpreted the variables differently: exposure can
come in varying degrees, andmutations can have varying impacts
or severity. The framework presented in this paper predicts that
people normatively ought to change the functional form that they
assume depending on how they interpret the variables. If they
adopted the experimenters’ framing, then they should use the
noisy-OR/AND model. If they believed that the factors could
vary more smoothly, then they should use the linear model (or
something more like the linear model, since U might not be
+∞). And although people frequently deviate behaviorally from
normative prescriptions, these normative guidelines provide
reason to suspect that people might think about default causal

9For example, if I see someone has an elevated heart rate, then that increases the

probability that they have been exercising. However, if I subsequently learn that

they have had many cups of coffee, then the probability of exercising drops to

(almost) baseline, since the known caffeine ingestion “explains away” the elevated

heart rate.

functions in these ways (since this is the privileged default
function).

Varying beliefs about variable value ranges are not the
only possible explanation for diversity in functional form. For
example, people might instead simply use one or another
functional form out of habit, or because of distinctive past
experiences. Alternately, the probe question used to obtain causal
judgments is also known to influence the responses. In this case,
though, we need to be careful to distinguish between two different
possibilities. First, different probe questions might actually be
eliciting judgments of different values, perhaps parameters in
Equation (3) but perhaps not. For example, the different probe
questions in Collins and Shanks (2006) arguably elicit judgments
of different quantities, all of which appear as (or can be computed
from) parameters in Equation (3). A second possibility is that
different probe questions elicit judgments of the same parameter,
but bias those judgments in specific ways. However, there does
not currently seem to be an uncontroversial case demonstrating
such an impact of probe question. More generally, though,
I contend that varying value range beliefs are plausibly one
explanation for diversity in parametric form, but I am not thereby
committed to these being the only plausible explanation.

Anecdotally, this type of diversity in inferred variable value
ranges would explain other cases of potentially puzzling empirical
data beyond the Lober and Shanks (2000) experiments. Further
targeted experimentation would be required to determine the
variable value ranges that people infer from the cover stories.
One route would be experiments in which participants observe
identical data, but receive different cover stories that frame
the variables as either binary or continuous. A different route
would be to show logically almost-identical data, but with
slightly different values that cue participants to different potential
ranges10. For example, the sequence <0, 0, 1, 0, . . .> suggests a
binary variable; <0.01, −0.02, 1.05, 0.03, . . .> gives essentially
the same information but suggests a continuous variable with
narrow value range; and <0.03, 0.07, 17.32,−0.01, . . .> suggests
a continuous variable with much wider range (but still with
only two functionally-distinct values). The present framework
predicts that there should be corresponding differences in the
assumed functional forms for causal inference as either the cover
story or the numeric ranges shift (cf. Beckers et al., 2005). A
different route would be to look for systematic variation in causal
inference depending on variable ranges since, as noted earlier, the
theory expressed here implies that causal reasoning should also
use Equation (3).

The privileged Equation (3) also connects with theories of
human causal learning, beyond simply the 1P and causal power
theories (and their dynamical variants). For example, various
Bayesian theories (or theories based on probabilistic inference
over causal models) have been proposed for human causal
learning (e.g., Steyvers et al., 2003; Griffiths and Tenenbaum,
2005; Lu et al., 2008; and many papers derived from these
theories). These (quasi-)Bayesian theories all require that we
either specify a functional form for the causal models, or else

10Thanks to an anonymous reviewer for suggesting this way to test the relevance

of variable type and value ranges.
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put a probability distribution over possible functional forms
(as in Lucas and Griffiths, 2010). In either case, though, the
linear or noisy-OR/AND models are the dominant ones that are
used. A natural question is whether a causal (structure) learning
theory based on Equation (3) as the functional form would yield
different descriptive accuracy.

Outside of causal cognition, there is a long history of
psychological research on function approximation that has
shown that people find linear functions easier to learn (e.g.,
DeLosh et al., 1997; McDaniel and Busemeyer, 2005; and
references therein), and even have a significant bias in favor of
understanding the world in terms of linear functions (Kalish
et al., 2007). These results are sometimes thought to be in
conflict with the many causal learning experiments showing
noisy-OR/AND models to be preferred. In particular, one might
a priori expect that causal learning and function learning should
default to similar functions, as causal inference is arguably a
special case of function learning. It would presumably be odd
if the two types of learning had completely different defaults.
Equation (3) provides a measure of theoretical unification for
these disparate psychological results: noisy-OR/AND models
and linear models are not theoretical competitors, but rather
different special cases of the same general, privileged equation
for (quasi-)independent causes or factors. In practice, function
learning experiments always use continuous spaces, so the
preference for linear functions is expected (given those variable
value ranges). More generally, we ought not frame the issue
as “noisy-OR/AND models vs. linear models,” since each is
the natural representation for a particular domain of variable
values.

The shared basis in Equation (3) for noisy-OR/AND models
and linear models also helps to explain a potentially surprising
observation: many mathematical results that hold for linear
models also hold for noisy-OR/AND models, and vice versa.
For example, the conditions for model parameter identifiability
are essentially the same for noisy-OR/AND models (Hyttinen
et al., 2011) and linear models (Hyttinen et al., 2012). Similarly,
we find basically the same conditions and statistical tests for
discovering an unobserved common cause of multiple observed
effects given either a noisy-OR/AND model (Pearl, 1988; Danks
and Glymour, 2001) or a linear model (Spirtes et al., 2000).
The overlap in the models’ mathematical properties has been
anecdotally noted, but there has not been a clear explanation
for why there would be such overlap. The existence of many
shared properties is, however, much less surprising given that
both models are special cases of a single, more general equation
(though their properties are not identical, since the different
variable value ranges do sometimes matter). Equation (3) thus
also points toward a plausible mathematical framework for the
widespread philosophical notion of causal capacity or causal
mechanism (Cartwright, 1989, 1999, 2007; Machamer et al.,
2000; Heil, 2005; Martin, 2008). Of course, Equation (3) only
provides a default or starting point; nonetheless, it can potentially
bring additional precision and clarity to philosophical debates
about the “natural” metaphysical structure and form of causal
relationships.

CONCLUSIONS

Causal learning, knowledge, inference, and reasoning are crucial
capabilities for successful action and navigation in the world. At
the same time, we frequently lack detailed domain knowledge
to determine, in a particular setting, the exact ways that causes
might combine to produce an effect. We thus need “defaults”
in terms of the functional forms that we use for causal learning
and reasoning. Observations, instruction, or other reasoning
might override these defaults, but they enable us simply to
begin causal learning in the first place. There is a rich cognitive
science literature attempting to determine how people think
about causal relations, whether before or after they observe
evidence. There has, however, been relatively little investigation
of the normative question of what functional form they ought to
assume.

This paper builds on cognitive science and machine
learning results for the simple case of all binary causes and
effects to develop a generalized framework that applies for
arbitrary variable value ranges. The resulting equation provides
a privileged default functional form for causal inference
when we expect the causal system to be composed of a set
of (quasi-)independent causal mechanisms or capacities.
This generalized framework provides further conceptual
clarification about causal capacities, as it reveals distinctions
(e.g., between the lower bound and the baseline value) that have
previously been relatively little-explored in the psychological
and machine learning literatures. More importantly, this
“master equation” provides a natural way to unify disparate
equations—in particular, the noisy-OR/AND models and
linear models—that have previously been viewed in cognitive
science as competing theories, and in machine learning as
relatively independent of one another. The widespread use,
value, and connections between such models is eminently
explainable when we understand them as deriving from the
same fundamental framework and equation. This privileged
framework thus provides a precise, formal representation that
can significantly constrain our normative models of causal
capacities, and thereby people’s default representations of
them.
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APPENDIX OF PROOFS

This appendix provides the proofs of all theorems (with the
theorems included for completeness).

Theorem 3.1: Let f (x)=e be a function satisfying SCAD,
No Uncaused Effects, Distinct Causal Effect, and Generative
Accumulation. If f (x) is expressible as a finite polynomial, then
uniquely f

(

x, y
)

= x+ y−
xy
U .

Proof of Theorem 3.1: Any symmetric polynomial in x, y
is uniquely expressible as a polynomial with (x+y) and (xy) as

the base elements: f
(

x, y
)

=
∑

i≥ 0 αi

(

x+ y
)i
+

∑

j> 0 βj

(

xy
)j
.

Since f () is finite, then i, j < ∞. Let n be the largest degree of x
and y in the f (x, y) polynomial (which is the same for both, by
Symmetry). Commutativity implies that f (f (x, y), z) = f (f (x, z),
y). The left-hand side of this equality involves two applications of
f () to y, so its degree will be n2; the right-hand side involves only
one application of f () to y, so its degree will be n. Therefore, the
equality can only hold if n= 0 or n= 1. Thus, necessarily we have:
f
(

x, y
)

= C+α
(

x+ y
)

+β(xy), for some constant C (and where
possibly C, α, or β equal 0). By No Uncaused Effects, f (0,0) = 0
and so C = 0. By Distinct Causal Effect, f (x, 0)= x and so α = 1.
Without loss of generality, we can assume that all factors have the
same maximal value U. Then by Generative Accumulation, f (U,
U)= U and so β = −1

U . Hence, f
(

x, y
)

= x+ y−
xy
U .

Theorem 3.2: If L = 0, U = 1, and Ci ∈ {0, 1}, then Equation
(3) is the noisy-OR/ANDmodel.

Proof of Theorem 3.2: Since L is equal to the baseline, there
are no “reducing” causal capacities: for any putative reducer R,

the expected change in E from a unit change in R (when all
other causes are absent) is always zero, and so wR is always zero.
Since the causal factors are restricted to {0, 1}, the bk and gi
variable values can be replaced with delta functions. The resulting
equation (when we substitute in U and L) is the noisy-OR/AND
model.

Theorem 3.3: If L = −∞, U = +∞, Ci ∈ [−∞, +∞], and
there are no blockers, then Equation (3) is E (E) =

∑g
i= 1 wigi −

∑r
j= 1 wjrj.

Proof of Theorem 3.3: Consider only the generators
in Equation (3). Algebraic transformation yields
U

[

1− (1−
∑g

i= 1
wigi
U + Γ )

]

=
∑g

i= 1 wigi + UΓ , where
Γ is the remainder of the product expansion. Every term in Γ

has at least U2 in the denominator, and so as U → +∞, UΓ →

0. The same reasoning yields the corresponding summation for
reducers.

Corollary 3.4: If L=−∞, U =+∞, Ci ∈ {0,1}, and there are
only generators, then Equation (3) is the noisy-addition model.

Proof of Corollary 3.4: The restriction of theCi values implies
we can use δ(Gi) rather than gi. Direct substitution into the
equation in Theorem 3.3 yields the noisy-addition model.

Theorem 3.5: If L = −∞, U = +∞, and
Ci ∈ [−∞, +∞], then Equation (3) is E (E) =
∏b

k= 1 (1− wkbk)
[

∑g
i= 1 wigi −

∑r
j= 1 wjrj

]

.

Proof of Theorem 3.5: It is straightforward to incorporate
blockers into Theorem 3.3, as the initial product term in Equation
(3) will simply act to globally attenuate the linear impact (on the
expectation of E) of the generators and reducers.
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