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Abstract 

Decision making and causal reasoning are clearly relevant for 

one another, but have often been studied in relative isolation. 
In this paper, we report the results of two experiments that 
investigated whether people can make appropriate decisions 
using causal beliefs learned from sequences of cases. We 
found that people behave close-to-optimally for various 
causal and payoff structures, even though they are relatively 
poor at providing verbal reports of causal strength.  

Keywords: causal learning; decision making; Bayes nets; 

intervention; causal reasoning. 

Introduction and Related Research 

Causal knowledge and reasoning are clearly relevant to our 

decision making, as we take various actions because we 

think that they will cause desired effects (Sloman, 2005). At 

the same time, our decision making is relevant for our 

causal learning and reasoning, both because our decisions 

shape the data we observe and because we may adjust our 

causal learning in light of anticipated future decisions. In 

light of the close connection between causal reasoning and 

decision making, it seems entirely natural to aim for an 

integrated theory of the two. Such a theory has emerged in 
the artificial intelligence and machine learning literatures 

through the combination of Bayesian networks as a 

representation of causal knowledge, and causal decision 

theory. In contrast, examination of an integrated model 

along these lines has only recently been explored in 

cognitive psychology (Hagmayer & Sloman, 2005, 2006; 

Sloman & Hagmayer, in press).  

At the coarsest level, decision theory recommends that 

decision makers choose the option that maximizes the 

subjective expected utility. That is, given actions A1, …, An, 

do the Ai with largest  P(Oj | Ai)  U(Oj), where Oj ranges 

over the possible outcomes, and U() is a utility function. For 

example, suppose I have the choice of Thai food or steak for 

dinner. I enjoy good steak the most, but 10% of the time it is 

overcooked and so quite awful. In contrast, the Thai food is 

always pleasant. 
We can think about the problem as involving three 

possible outcomes corresponding to a very enjoyable (good 

steak), pleasant (Thai), or unpleasant (bad steak) dinner. The 

expected value of eating Thai is U(pleasant), since that 

outcome is guaranteed; the expected value of steak is 0.9  

U(very enjoyable) + 0.1  U(unpleasant). Standard decision 

theory prescribes that I do the action with greater expected 

value, where that clearly depends on the precise utility 

function U().  

Much of the work in, for example, behavioral economics 

aims to determine features of the utility function. In 

contrast, the long-running philosophical debate between 

evidential and causal decision theorists centers on the proper 

method to calculate the probabilities (e.g., Glymour & 

Meek, 1994; Hurley, 1994; Joyce 2000; Seidenfield 1984). 

Evidential decision theorists argue that the probabilities 

should be based on straightforward conditionalization; 

causal decision theory holds that the relevant probabilities 
are causal ones that depend on the results of the action, 

understood as an exogenous force on the causal system.  

In recent years, Bayes1 nets have emerged as a relatively 

standard representation of causal structures. A causal Bayes 

net is composed of two related components: a directed 

acyclic graph that encodes the qualitative causal structure, 

and a joint probability distribution over the variables in the 

network that encodes the quantitative strengths of the causal 

relationships. These components are connected by a Markov 

assumption and there is a rich technical literature on 

inference and search for Bayes nets; details about these are 
not required for our purposes. Causal Bayes nets require 

only minimal metaphysical assumptions about the nature of 

causation; no strong theory is presupposed. 

Given some fully specified Bayes net, there is a precise 

method for predicting post-intervention probability 

distributions (Pearl, 2000; Spirtes, Glymour, & Scheines, 

1993). We can compute the probability of any variable (or 

set) in the system conditional on an intervention on any 

other variable (or set). In the Bayes net framework, 

interventions are most commonly understood as exogenous 

manipulations of particular variables. These interventions  

sometimes called ‘hard’ interventions change the 

                                                             
1 There is nothing inherently Bayesian about ‘Bayesian networks.’ 
The name arises from the original uses of Bayes nets in Bayesian 
updating, and not because of any necessary connection between the 
framework and Bayesianism more generally. 



underlying causal structure by eliminating the influence of 

all normal causes upon a variable within the system.  

Continuing the food example from before, the 

underlying causal structure is a simple one: Food Choice  

Enjoyment. Suppose, however, that I apply anesthetic to my 

tongue before dinner so that I cannot taste anything. In that 

case, food choice is no longer a cause of enjoyment; rather, 

it is entirely determined by the intervention. Graphically, we 

remove (“break”) the edge. Hard interventions those that 

control the state of a variable are the most commonly 

discussed interventions, but the Bayes net theory of 

interventions is also well-defined for weaker types of 

interventions, such as those that simply perturb some 

variable away from its current value (e.g., adjusting my 

enjoyment by having a particularly sour fruit before dinner). 

Bayes nets thus provide a natural complement to causal 

decision theory, as they provide both a robust framework for 

modeling causal structures, and the methods required to 

compute the relevant post-action probabilities for causal 

decision theory. Various AI and machine learning models 

use Bayes nets (or related ‘influence diagrams’) and causal 
decision theory in exactly this way (e.g., Jensen, 1996, and 

references therein).  

A psychological model that integrates causal decision 

theory and Bayes nets in the natural way has only recently 

emerged (Hagmayer & Sloman, 2005, 2006; Sloman & 

Hagmayer, in press). Sloman and Hagmayer’s theory 

models choices as hard interventions, and expected utilities 

are all computed conditional on those interventions. 

To date, this psychological model has been tested almost 

entirely by experiments in which participants are explicitly 

told the causal structure. Sloman & Hagmayer (2005) found 

that people make different choices about intervening on A to 

obtain T if they are explicitly told that an A T correlation 

is due to direct causation (A  T), versus an unobserved 

common cause (A  B  T). In other words, people want 

to intervene on A when it is causal, but are comparatively 

indifferent when A is not actually a cause. Importantly, 

participants are simply told the causal structure; they do not 

have to do any learning besides text processing. 

There are a number of recent studies arguing that people 

can learn causal structure represented as a Bayes net  

from observational data, and in particular, from sequences 

of cases (e.g., Gopnik, Glymour, Sobel, Schulz, Kushnir, & 

Danks, 2004; Griffiths & Tenenbaum, 2005; Steyvers, 

Tenenbaum, Wagenmakers, & Blum, 2003). There is also 

evidence that people use that causal knowledge to predict 

the outcome of interventions (e.g., Gopnik, et al., 2004; 

Kushnir, Gopnik, Schulz, & Danks, 2003; Steyvers, et al., 

2003; Waldmann & Hagmayer, 2005), though this research 

has not been done in a standard decision-theoretic setting. 

In this paper, we aim to test the beginnings of an 

integration of these two literatures by asking: are people 
capable of using the products of causal learning from 

sequences to make well-informed choices? If so, are people 

sensitive to perceived causal strength (and not just structure) 

when making decisions? Experiment 1 aims to begin to 

answer these two questions. 

The previous research has also focused on cases of equal 

intervention cost/outcome payoffs. It thus does not provide 

a strong test of causal decision theory, as expected utility 

maximization is not separated from payoff probability 
maximization. That is, “correct” choices might simply be 

due to maximizing the probability of some payoff, rather 

than taking the utilities of the payoffs into account. In 

Experiment 2, we use a causal structure and payoff system 

for which these two methods make differing predictions. 

Finally, we wanted all participants to have a strong 

interest in the outcome of the decision making. We thus 

provided participants with cash payoffs depending on 

whether their intervention was successful in bringing about 

the desired outcome. While the amounts of money involved 

are small ($1 to $3), we believe that the use of outcome-

based payoffs provides important incentive for participants. 

Experiment 1 

Experiment 1 had two conditions with different causal 

structures; all participants did both conditions in random 

order. In each condition, participants were shown cases with 

two potential causes of a specified effect variable. All 

participants learned causal structures through the sequential 

presentation of cases, where the sequence ensured that 

participants saw exactly the desired frequency distribution. 
In condition A, one potential cause was a distractor variable 

that was uncorrelated with the effect. In condition B, both 

potential causes were actual causes, but one was much 

stronger. Condition B should be more difficult, as both 

variables are actual causes, and so participants need to track 

more information to make the final decision. 

Participants 

48 Carnegie Mellon University students participated and 

were compensated $5 for participation, plus $0 to $2, 

depending on the outcome of their choices.  

Design and Materials 

The experiment was done on computers in the Laboratory 

for Empirical Approaches to Philosophy at Carnegie Mellon 

University. The cover story placed participants in the role of 

plant biologists attempting to get certain flowers to bloom. 

Participants were first provided an introduction to the 

information they would be given, and then instructed that 

their goal was to learn what causes blooming so that they 

could subsequently intervene to produce blooming. During 

the learning phase, participants were (passively) shown a 

series of cases that they examined in a self-paced manner. In 

both conditions, the potential causes were (potential) 
fertilizers. Each had a distinct name; for simplicity, we refer 

to them below simply as ‘Fertilizer 1’ and ‘Fertilizer 2’. 

In condition A, the underlying causal structure was: 

Fertilizer 1  Blooming    Fertilizer 2 (i.e., Fertilizer 2 was 

not a cause). Participants saw 48 cases in this condition. The 
fertilizers were uncorrelated with each other, and the 



unconditional frequency of each was 0.5. Table 1 shows the 

conditional frequency of blooming given the fertilizers.  

Table 1: Distribution of blooming for condition A 

 

Fertilizer 1 Fertilizer 2 P(Bloom) 

Present Present 0.75 

Present Absent 0.75 

Absent Present 0 

Absent Absent 0 

 

Blooming occurs only if Fertilizer 1 is present. Fertilizer 2 

does not affect the probability of the bloom, and is simply a 

distractor. Participants were told that the Fertilizers were 

each applied before the bloom (if applied at all). 

In condition B, the underlying causal structure was 

Fertilizer 1  Blooming  Fertilizer 2; both fertilizers are 

actual causes of blooming. Participants saw 40 cases in this 

condition. The fertilizers were again uncorrelated with each 

other and occurred with an unconditional frequency of 0.5; 

the conditional frequency of blooming is given in Table 2.  
 

Table 2: Frequency distribution for condition B 

 

Fertilizer 1 Fertilizer 2 P(Bloom) 

Present Present 0.8 

Present Absent 0.6 

Absent Present 0.2 

Absent Absent 0 

 

During the test phase of each condition, participants were 

asked “To get the [PLANT NAME] to bloom, what do you 
want to apply?” where the actual plant name was used and 

participants were shown both the pictures and names of the 

two fertilizers. After choosing a fertilizer but before being 

told the outcome of their choice, participants were asked to 

rate the causal power of each variable for blooming. Ratings 

were provided on a slider that ranged from +100 (the cause 

always produces the bloom) to -100 (the cause always 

prevents the bloom), with 0 indicating no relationship. The 

slider moved in increments of 5, and participants were 

required to move the slider to give a response (i.e., they 

could not simply “click through”). The outcome of the 
intervention was determined by a pseudo-random sample 

from the underlying probability distribution, conditional on 

the participant’s choice. If the flower bloomed, participants 

immediately received $1. After completing one condition, 

participants moved on to the other condition. 

Results and Discussion 

There were no significant order effects, either for the ratings 

or the choices, and so we ignore condition order in these 

analyses. 45 of the 48 participants (93.75%) chose to 

intervene on Fertilizer 1 (i.e., the actual cause) in condition 

A. This pattern is significantly different from random choice 
(p<.001, binomial test). In condition B, 39 of 48 participants 

(81.25%) chose to intervene on Fertilizer 1 (i.e., the stronger 

cause), which is significantly different from random 

(p<.001, binomial test). The difference in choice 

percentages between conditions is significant (p=.041, 

McNemar’s test). Participants almost universally act to 

maximize P(Bloom), and therefore expected utility. 

Beyond simple choices, we were interested in whether 
participants were internally coherent: did they choose the 

fertilizer to which they subjectively assigned greater causal 

strength? 47 of the 48 participants (97.91%) gave coherent 

responses in condition A, and 43 (89.58%) were coherent in 

condition B. Both of these percentages are significantly 

different from random (p<.001 for both, binomial test). No 

participants were incoherent in both conditions. There is a 

trend towards greater coherency in A than B, but it is not a 

significant trend (p=.22, McNemar’s test). In any case, 

participants were clearly highly coherent in their choices. 

Interestingly, participant performance at the rating task 

was comparatively worse. Mean causal strength ratings for 
both conditions are shown in Figure 1. In Condition A, the 

mean strength rating of Fertilizer 1 was 63, which is 

significantly lower than the true strength of 75 (p=.01, t-

test). The mean strength rating of Fertilizer 2 was -23, 

which is significantly lower than the true strength of 0 

(p<.001, t-test).  

 

 
 

Figure 1: Mean strength ratings for both conditions 

 
In Condition B, the value for the “true” causal strength is 

not obvious. There is significant debate in the causal 

learning literature about whether conditional P (Shanks, 

1995; Spellman, 1996) or causal power (Cheng, 1997) 

provides the most appropriate measure of causal strength. In 
condition B, the two methods yield different values; we 

focus on P since the causal power value depends on the 

focal set. The mean reported causal strength of Fertilizer 1 

was 57, and is not significantly different from the P value 

of 60 (p=0.542, t-test). The mean strength rating of 

Fertilizer 2 was -10, which is significantly lower than the 

P value of 20 (p=.002, t-test.)  

Despite the largely inaccurate mean ratings, 45 out of 48 

participants (93.75%) in condition A gave the correct rank 

order for the causes (i.e., rating for Fertilizer 1 is greater 



than the rating for Fertilizer 2). 42 out of 48 participants 

(87.5%) gave the correct rank order for the causes in 

condition B. In both conditions, the numbers of participants 

with correct rank order are significantly better than random 

(p<.001 for both, binomial tests); participants were accurate 

about the strength ordering, though they did not get the 
exact numbers correct. The number with correct rank order 

in A was not significantly different from in B (p=.37, 

McNemar’s test). The one incoherent participant in 

condition A also gave an incorrect rank order, but only one 

individual (of six) who gave an incorrect rank order in 

condition B acted incoherently. There is no clear evidence 

of a correlation between incoherent behavior and incorrect 

rank ordering (in this very small sample).  

Experiment 2 

Experiment 2 had the same domain as Experiment 1, but 

used the structure: Fertilizer  Nitrogen  Blooming, 

where both F and N are potential targets of intervention. 

This causal structure is more difficult to learn than either of 

those used in Experiment 1 (e.g., Lagnado & Sloman, 
2002), and so provides a stronger test. More importantly, 

however, this experiment aimed to distinguish between two 

plausible decision strategies: (i) maximize expected utility; 

and (ii) maximize the probability of payoff. 

Participants were paid more if they caused blooming by 

intervention on F; for our probabilities, the larger payoff 

meant that intervention on F maximized expected utility 

(assuming a natural utility function). At the same time, an 

intervention on N necessarily had a higher probability of 

success. Thus, participants who seek to maximize expected 

value should intervene on F; those who seek to maximize 
the probability of a payoff should intervene on N. Of course, 

these different predictions are based on the true probabilities 

and payoffs; participant behavior will depend on their 

subjective beliefs. 

Since prior research has not examined this type of causal 

or payoff structure, we used two conditions: a “Stepwise” 

condition in which participants were shown a sequence of 

cases (as in Experiment 1); and a “Story” condition in which 

they were explicitly told the causal story using exact 

statistics. The Story condition connects this experiment with 

the research of Sloman and Hagmayer, who have not 

previously considered a causal structure such as this one. 

Participants 

The same 48 Carnegie Mellon students participated and 

were compensated an additional $0, $1, or $3, depending on 

the outcome of their choice. Sixteen participants were in the 

Story condition; 32 were in the Stepwise condition. 

Design and Materials 

The experiment was conducted in the same location, and the 

cover story was nearly identical. Participants were asked to 

learn what causes blooming so that they can intervene either 

on the fertilizer, or on the soil nitrogen, to produce 
blooming. In the Story condition, participants were told: 

If you use nitrogen and the rose blooms, you will 

receive $1. If you use fertilizer and the rose 

blooms, you will receive $3. Fertilizer makes roses 

bloom by adding nitrogen to the soil. If you add 

fertilizer, you have 3 chances in 4 of triggering the 

nitrogen. If the soil has nitrogen in it, there are 4 
chances out of 5 of making the rose bloom. The 

soil will only have in it what you put it in. There 

will be no naturally occurring nitrogen or fertilizer. 

Which would you rather use, nitrogen or fertilizer? 

In the Stepwise condition, participants were shown a 

sequence of cases that captured the relevant frequency 

distribution. The fertilizer occurred with an unconditional 

probability of 0.5. The nitrogen never occurred without 

fertilizer; when fertilizer was present, the nitrogen occurred 

with probability 0.833. This conditional probability is 

slightly different from that in the Story condition, and was 

due to a programming error. Since we do not compare 
across conditions, we do not believe that the slight change 

makes a significant difference. Blooming never occurred 

without nitrogen; when nitrogen was present, blooming 

occurred 80% of the time. The resulting distribution of cases 

is shown in Table 3; for reasons of space, we omit cases that 

never occur. As in Experiment 1, participants passively 

observed the 48 cases. 

 

Table 3: Case distribution for Stepwise condition 

 

Fertilizer Nitrogen Blooming # of cases 

Yes Yes Yes 16 

Yes Yes No 4 

Yes No No 4 

No No No 24 

 

In both conditions, participants first gave a response. 
Before being told the outcome, they were asked to rate the 

causal strength of each variable on blooming, with the same 

prompt and rating slider as in Experiment 1. Participants 

were then told the result of the intervention, which was 

determined by a pseudo-random draw from the appropriate 

conditional distribution. If the flower bloomed and the 

participant used the fertilizer, the reward was $3; if she used 

nitrogen, then the reward was only $1. The objective 

expected value from using the nitrogen was $0.80 in both 

conditions. The objective expected value for an intervention 

on the fertilizer was $1.80 in the Story condition, and $2.00 
in the Stepwise condition. At the same time, P(Bloom | 

Intervene on N) = 0.8 > 0.66 = P(Bloom | Intervene on F in 

Stepwise) > 0.6 = P(Bloom | Intervene on F in Story). 

Expected utility maximization and payoff probability 

maximization thus make different predictions in both 

conditions. Note that there is no correct answer for this 

experiment, as the “right” answer depends on what the 

participant wishes to maximize. Although we report 

participant responses below, we are more concerned with 

their strength ratings, and whether they acted to maximize 

subjective expected utility or payoff probability (or neither). 



Results and Discussion 

Story Condition. Five of the sixteen participants chose to 

intervene on the nitrogen; the other eleven chose the 

fertilizer. The mean causal strength rating for the fertilizer 

(60) is identical to the true value of 60 (see Figure 2 below). 

However, the distribution of responses was not unimodal: 

six participants (37.5%) gave a response within five units of 

60, while seven participants (43.75%) gave a response 

within five units of 75, which is the strength of the fertilizer 

on the nitrogen. Of the three participants who gave other 
types of responses, two gave responses very near the middle 

of the slider, which suggests that they did the minimum 

required to move to the next question. The last gave a 

response of 50. 

 

 
 

Figure 2: Mean strength ratings for both conditions 

 

The causal strength ratings for the nitrogen were more 
surprising. The mean rating was 50, which is significantly 

less than the true strength of 80 (p=.004, t-test). Only eight 

participants estimated the strength of the nitrogen within 5 

units of the true strength. Four participants gave causal 

values very near the middle of the slider. One gave a rating 

of -20, suggesting that the nitrogen inhibited blooming. 

Only two participants gave correct answers for the 

strengths of both causal variables: one intervened on the 

nitrogen, the other on the fertilizer. The general failure of 

participants to give the correct or even plausible strength 

ratings is quite surprising, particularly since participants 

were paid based on the success of their intervention, and 

they had just finished reading a story that explicitly 

provided the causal strengths.  

Having noted that participants may not have provided 

accurate ratings, we analyzed participant behavior to 
determine whether subjective expected utility maximization 

or payoff probability maximization better explains their 

behavior. The classification of participant behavior is shown 

in Table 4. 

Eleven participants (68.75%) gave responses that 

maximize subjected expected utility, and eight (50%) sought 

to maximize subjective payoff probability. Neither of these 

is significantly different from chance (respectively p=.21, 

p=.50, binomial tests) Notice that some participants were 

able to maximize both expected utility and payoff 

probability given their subjective beliefs.  

Table 4: Classification of Story condition behavior 

 

 Expected utility 

maximizer 

Not an expected 

utility maximizer 

Payoff prob. 

maximizer 

5 3 

Not a payoff 

prob. maximizer 

6 2 

 

Stepwise Condition. Fifteen of the 32 participants in this 
condition chose to intervene on the nitrogen. The mean 

causal strength rating for the nitrogen was 50, which is 

significantly lower than the true value of 80 (p<.001, t-test). 

The mean causal strength rating for the fertilizer was 23, 

which is significantly lower than the correct value of 66 

(p<.001, t-test), but the plurality of participants gave a 

response of 0. This value is the causal strength of the 

fertilizer conditional on the presence of nitrogen, implying 

that in this condition, many participants reported conditional 

strengths. Even if ratings near the middle of the slider are 

removed, both mean strength ratings were significantly less 
than the actual causal strengths (both p<.001, t-tests). 

Twenty participants (62.5%) gave the correct rank order for 

the causal strengths, which is not significantly different 

from chance (p=.108, binomial test). 

The classification of participant behavior is shown in 

Table 5. 25 participants (78.13%) acted as if they were 

maximizing subjective expected utility, which is 

significantly more than chance (p=.001, binomial test).  21 

participants (65.6%) acted as if they were maximizing 

payoff probability, which is not significantly different from 

chance (p=.11, binomial test). Notably, 17 of the 20 

participants who gave the correct rank order for the causal 
strengths acted as expected utility maximizers, which is 

significantly different from chance (p=.003, binomial test).  

 

Table 5: Classification of Stepwise condition behavior 

 

 Expected utility 

maximizer 

Not an expected 

utility maximizer 

Payoff prob. 

maximizer 

19 2 

Not a payoff 

prob. maximizer 

6 5 

 

Many participants gave causal strengths that allowed 

them to both maximize utility as well as the probability of a 

payoff. While they chose the wrong causal strengths, these 
participants were at least coherent when they intervened.  

Conclusion 

These experiments are part of a larger project to try to tie 

together causal learning and reasoning, and causal decision 

theory. They provide further support that the causal learning 

and decision making elements of our cognitive systems are 

closely connected. In particular, people seem to be quite 

capable of learning simple causal structures from 



experience, and then using those beliefs in sensible ways for 

decision making in novel situations. 

Experiment 1 showed that people can use the results of 

causal learning from sequences to generate sensible 

decisions. Although people did not necessarily learn the true 

causal strengths, they largely used their (incorrect) 
subjective beliefs in a coherent manner. Not surprisingly, 

condition A was easier for participants than condition B. 

This finding suggests that people are not overly distracted 

by a potential cause that is uncorrelated with the effect, but 

they are affected by the presence of other actual causes and 

will rank secondary causes as a prohibitive cause. This 

result is, in some ways, not particularly surprising in light of 

empirical evidence that people sometimes focus more on 

causal structure than causal strength (e.g., Griffiths & 

Tenenbaum, 2005; Steyvers, et al., 2003).  

In the Stepwise condition of Experiment 2, a majority of 

participants acted to maximize both expected utility and 
payoff probability. That is, their subjective beliefs led to a 

choice problem that does not distinguish between these two 

principles. We are currently developing an experiment that 

more directly tests these two principles. The Story condition 

is more troubling, as participants did not seem to read the 

story carefully (as evidenced by their failure to rate the 

causes appropriately). Thus, our next experiment will use 

various incentives to improve participant comprehension, as 

well as explicit measures of story comprehension. We also 

intend to provide causal diagrams rather than text, thereby 

perhaps avoiding typical problems of story comprehension. 
Ordering effects over the two experiments may also 

have played a role, as all participants were first exposed to 

experiment 1. Finally, we aim to understand better the 

individual differences that lead to variations in choice 

behavior. Our participants are relatively high-functioning, 

and so fine-grained measures of particular cognitive abilities 

may be required to separate out individual variation.  
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