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The Independence Thesis: When
Individual and Social Epistemology
Diverge*

Conor Mayo-Wilson, Kevin J. S. Zollman, and David
Danks'™

Several philosophers of science have argued that epistemically rational individuals
might form epistemically irrational groups and that, conversely, rational groups might
be composed of irrational individuals. We call the conjunction of these two claims the
Independence Thesis, as they entail that methodological prescriptions for scientific
communities and those for individual scientists are logically independent. We defend
the inconsistency thesis by characterizing four criteria for epistemic rationality and
then proving that, under said criteria, individuals will be judged rational when groups
are not and vice versa. We then explain the implications of our results for descriptive
history of science and normative epistemology.

Philosophers and social scientists have often argued (both implicitly and
explicitly) that rational individuals can form irrational groups and that,
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654 CONOR MAYO-WILSON ET AL.

conversely, rational groups might be composed of irrational individuals.'
We call the conjunction of these two claims the Independence Thesis, as
together they imply that prescriptions for individual and group decision
making, respectively, are logically independent of each other.

In the context of science, the Independence Thesis is the assertion that
methodological prescriptions for scientific communities and those for in-
dividual scientists are logically independent,” and in recent years, this
thesis has been defended in various forms. Individuals who desire credit
more than truth may divide “cognitive labor” across competing research
programs better than do truth-seeking scientists, thereby inadvertently
improving the scientific community’s chances of discovering truths (Gold-
man 1992; Kitcher 1993; Strevens 2003). Individuals who refuse to aban-
don their favored theory, even in light of strong evidence against it, may
help to make sure good theories are not prematurely abandoned by the
broader scientific community (Feyerabend 1965, 1968; Popper 1975; Kuhn
1977; Hull 1988; Zollman 2010). Groups composed of a random assort-
ment of problem solvers may outperform a group of the individually best
problem solvers (Hong and Page 2001, 2004). Unreliable individuals might
pool their information in such a way as to create reliable groups (Suro-
wiecki 2004; Goodin 2006). Groups in which a significant amount of
information is ignored might do better than groups in which information
flows freely because an appropriate amount of diversity can be maintained
in the absence of information (Zollman 2007, 2010). And so on. The
underlying spirit of the Independence Thesis has motivated the creation
of a new field—social epistemology—which focuses explicitly on the ep-
istemic properties of groups rather than individuals (Goldman 1999).

Despite the recognition that individual and group epistemic rationality
might differ, discussions of scientific methodology (and of epistemology
generally) often depict the scientist as studying the world in isolation,
rather than in a community of other researchers. Moreover, philosophers
of science continue to draw methodological prescriptions for scientific
practice in light of such idealized models. For example, in Bayesian models

1. Here, we are thinking of a host of economic phenomena. In game theory, the
prisoner’s dilemma illustrates that rational agents might nonetheless act so as to ne-
cessitate an outcome that is Pareto dominated by some other outcome; i.e., the alter-
native outcome is strictly preferred by all agents. The free-rider problem and the tragedy
of the commons are famous examples of such multiple-person prisoner’s dilemmas. In
social choice theory, Arrow’s theorem asserts that it may be impossible to form a
rational “group preference,” even when each agent in the group has a rational set of
preferences. We thank an anonymous referee for suggesting these comparisons to our
results.

2. A similar claim is called the autonomy thesis by Bishop (2005). As there are some
differences between the two theses, we will use a different name.
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of science, researchers are typically conceived as responding to evidence
in isolation. Yet the real-world scientist is always part of some larger
research community. Hence, philosophers who employ Bayesian models
to draw prescriptions for working scientists often implicitly assume the
falsehood of the Independence Thesis: they uncritically conclude that each
member of a scientific community ought to adopt Bayesian methodology
from the assumption that Bayesianism is rational for an isolated individ-
ual.® Similar remarks can be made for formal learning theory, belief re-
vision, ranking theory, and a host of other inductive methods recom-
mended by philosophers of science and epistemologists.

If true, the Independence Thesis suggests that the methods prescribed
by Bayesianism, belief-revision theories, formal-learning theory, and so
on, might be correct for an isolated scientist but that this correctness need
not extend to a community of scientists. Reliable, correct inference for a
community of scientists might depend crucially on the internal organi-
zation of that community.

In this article, we (i) develop a model of communal scientific inquiry;
(i1) describe several applications of the model to scientific practice, in-
cluding an extended application to modeling theory choice in psychology;
and (iii) prove several theorems that characterize when four different
criteria for individual and group epistemic rationality converge and di-
verge. In addition to generalizing existing models of scientific commu-
nities,* the model we develop and the theorems we prove contribute to
understanding the relationship between individual and social epistemology
in at least four novel ways.

First, our arguments make precise several possible formulations of the
Independence Thesis and show that some formulations are true while
others are not. In other words, there is no single Independence Thesis
concerning the relationship between individual and social epistemology
but rather a myriad of claims—some of which are true, and others not.

3. Three caveats are necessary. First, some regard Bayesianism only as a description
of scientific practice. Our arguments address only those philosophers who draw pre-
scriptive consequences from Bayesian models. Second, while some have attempted to
analyze how Bayesians should respond to evidence from others (e.g., Bovens and
Hartmann 2003), the focus of Bayesian philosophy remains the performance of an
individual inquirer, not the performance of a group of inquirers. Finally, the propriety
of groups of Bayesians may, in fact, depend on properties of individual Bayesians in
isolation, but in light of the Independence Thesis, one is obliged to give an argument
about why those properties “scale up.” One cannot simply presume that they will.

4. Our model of scientific practice generalizes some features of models already extant
in the philosophical literature, but it also differs in several important respects (Kitcher
1990, 1993, 2002; Weisberg and Muldoon 2009). Space prevents a detailed comparison
of these models.
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In discussing the relationship between individual and social epistemology,
therefore, one must precisely characterize the criteria by which individual
or group epistemic quality is judged.

Second, although economists and other social scientists frequently argue
that rational individuals might compose irrational groups, it is less clear
that rational groups might consist predominantly of irrational members.
Two of our theorems suggest this more radical conclusion: prescriptions
for scientific communities might permit (or even require) every individual
researcher to adopt a method that would be fundamentally irrational for
a scientist learning in isolation.

Third, we consider different inductive and statistical methods that have
been advocated in various scientific disciplines.” Beyond simply asserting
the existence of methods that are good from an individual perspective
and bad from a group perspective (or vice versa), we point to particular
methods that have been put forward as good for scientific inference. Thus,
we simultaneously evaluate those methods along with generating more
abstract claims about the relationship between group and individual judg-
ments of rationality.

Finally, the formulations of the Independence Thesis that we defend
have important descriptive and normative implications for history and
philosophy of science. The descriptive implication is that history and
sociology of science can proceed neither by focusing exclusively on in-
dividual researchers nor by focusing exclusively on aggregate properties
of scientific communities. Rather, both levels must be considered in un-
derstanding how groups come to further scientific knowledge.® For ex-
ample, although Aristotle’s scientific acumen was unparalleled during his
time, one cannot uncritically conclude that his methods, if employed by
many scientists for centuries, would prove fruitful for discovery. Con-
versely, knowing that Bourbaki discovered an immense number of fruitful
theorems does not tell us, after all, about the rationality of any particular
individual mathematician in the group. An accurate historical record of
science ought to incorporate both detailed descriptions of the achieve-
ments of individual scientists and also a social history of the relevant
scientific communities and institutions, including an analysis of how learn-
ing methods are shared and research results are communicated.

The normative implications of our arguments are also important. A

5. Epsilon greedy methods are described by Sutton and Barto (1998), Roth-Erev re-
inforcement learning is analyzed by Beggs (2005), and Bayesian methods are analyzed
by Berry and Fristedt (1985).

6. In this way, our argument bolsters one of the central claims of Philip Kitcher (1993),
wherein he argues against the move from the “irrationality” of individual scientists to
the “irrationality” of science as a whole.
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normative theory that evaluates scientific methodology by focusing on a
single scientist will not necessarily “scale up” to a theory about groups.
Similarly, a normative theory that only considers properties of groups
should not necessarily require that each individual adopt a methodology
that would necessarily succeed in isolation.

For these reasons, the Independence Thesis supports a separation be-
tween social epistemology and more traditional individualistic episte-
mology, at least with regard to certain standards of reliability. Moreover,
these results make precise the intuitions that others have had about the
context sensitivity of the connections between individual and group ra-
tionality. For example, we now have a clear picture of how dogmatic
adherence to a particular theory can stymie science in one context and
yet promote appropriate epistemic diversity in another (Feyerabend 1965,
1968; Popper 1975; Kuhn 1977; Hull 1988; Zollman 2010).

1. A Model of Scientific Inquiry. To distinguish between and make precise
several formulations of the Independence Thesis, we introduce the fol-
lowing idealized model of scientific inquiry.” We describe features of our
model fairly informally; technical details can be found in Mayo-Wilson,
Zollman, and Danks (2010). In our model, there is a finite collection of
scientists, whom we will also call learners. Each scientist has access to the
research being conducted by a set of his or her peers, whom we will call
neighbors. A scientist’s neighborhood can be understood as her closest
colleagues: those researchers with whom she communicates and exchanges
information, papers, draft papers, and so on. We assume that the sharing
of information is symmetric, in the sense that if scientist 1 knows about
scientist 2’s research, then 2 knows about 1’s research.

We represent the relationships in a scientific community using undi-
rected graphs like the one in figure 1. We will often refer to such a com-
munity as a research network or simply a network. For simplicity, we
assume that the network structure is fixed for the duration of inquiry,
although real-world scientific communities are of course dynamic and

7. In our model, each individual scientist is confronted with the same “bandit problem.”
In other words, what we call a learning problem below is more frequently called a
bandit problem in economics and psychology. See Berry and Fristedt (1985) for a
survey of bandit problems. The difference between our model of scientific inquiry and
standard bandit problems is that our model captures the social dimension of learning.
We assume that, as they learn, scientists are permitted to share their findings with
others. Thus, our model is identical to the first model of communal learning described
in Bala and Goyal (2011). Importantly, many of our assumptions are either modified
or dropped entirely by authors who have developed similar models, and we urge the
reader to consult Bala and Goyal (2011) for a discussion of how such modifications
might affect our results.
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Figure 1. Research network (/eft) and neighborhood of that same network (right).
Dark node = a scientist; gray nodes = neighborhood.

change over time. Finally, we assume that our research networks are
connected: there is an “informational path” (i.e., a sequence of edges)
connecting any two scientists. An informational path represents a chain
of scientists who each communicate with the next in the chain. In this
model, one learns about the research results of one’s neighbors only;
individuals who are more distant in the network may influence each other
but only by influencing the individuals between them.® We restrict our-
selves to connected networks because unconnected research networks do
not adequately capture scientific communities but rather several separate
communities. Examples of a connected and an unconnected network are
depicted in figure 2.

At each stage of inquiry, each scientist may choose to perform one of
finitely many actions, such as conducting an experiment, running a sim-
ulation, making numerical calculations, and so on. We assume that the
set of actions is constant through inquiry, and each action results (prob-
abilistically) in an outcome. An outcome might represent the recording of
data or the observation of a novel phenomenon. Scientific outcomes can
usually be regarded as better or worse than alternatives. For example, an
experiment might simply fail without providing any meaningful results.
An experiment might succeed but give an outcome that is only slightly
useful for understanding the world. Or it might yield an important result.
In order to capture the “epistemic utility” of different scientific outcomes,
we will represent them as real numbers, with higher numbers representing
better scientific outcomes.’

8. Our model does not allow the sharing of secondhand information, which is un-
doubtedly an idealization in this context. However, we do not think it is likely that a
more realistic model that included such a possibility would render our conclusions
false, and such a model would be significantly more complex to analyze.

9. For technical reasons, we assume outcomes are nonnegative and that the set of
outcomes is countable. Moreover, although we assume (for presentation purposes) that
the number of actions and scientists is finite, it is not necessary to do so. See Mayo-
Wilson et al. (2010) for conditions under which the number of actions and agents
might be considered countably infinite.
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Figure 2. Connected network (left) and unconnected network (right).

There is a set of possible states of the world, and the probabilities of
outcomes (after an action) can depend on the state of the world. This
captures the idea that many outcomes (e.g., experimental observations)
depend on the world being a certain way. For example, the outcome of
the detection of the bending of light during an eclipse depends on the
state of the world—specifically, whether general relativity is true or false.
Of course, detection is only possible if one sets up particular measuring
apparatuses and so forth; some action must be taken by the scientist. We
assume the probability of some outcome given an action and world is
constant through time. Such an assumption may not be realistic. For
example, a discovery is an outcome that can only happen once, regardless
of how many times the scientist takes the relevant action.

Throughout, we will consider a running example of theory choice in
cognitive psychology. Specifically, consider the problem of determining
the nature of human concepts. There is a range of theories of concepts,
including exemplar-based theory (Medin and Schaffer 1978; Nosofsky
1984), prototype-based theory (Smith and Minda 1998; Minda and Smith
2001), causal-model theory (Rehder 2003a, 2003b), theory theory (Carey
1985; Gopnik and Meltzoff 1997), and others. The states of the world in
this example correspond to the actual cognitive representations that people
have. Actions in the model correspond to a scientist acting to verify a
particular theory: conducting experiments, performing mathematical der-
ivations, and so forth.!® Note that a scientist’s action in this model is not
some psychological act or state but rather is an observable action that
leads to an observable outcome. (We return to this point below.) Outcomes
in the model are the importance, quality, and nature of the resulting
research products. Clearly, outcomes depend on both what cognitive rep-
resentations are actually in people’s heads (i.e., what our concepts really
are) and also the type of investigation conducted. At the same time,
outcomes are not a deterministic function of cognitive representations and

10. Because of the “first past the post” incentive system in science, an action cannot
correspond to a specific experiment since (as noted earlier) the value of the outcome
(i.e., the discovery) is not stable over time.
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the type of investigation, as many other factors can influence the research
products (e.g., experimental design, measurement error).

Returning to the abstract model of scientific inquiry, we say that a
learning problem is a quadruple (Q, 4, O, p), where Q is a set of states of
the world, A4 is a set of actions, O is a set of outcomes, and p is a measure
specifying the probability of obtaining a particular outcome given an
action and state of the world. In general, at any point of inquiry, every
scientist has observed the finite sequence of actions and outcomes per-
formed by herself, as well as the actions and outcomes of her neighbors.
We call such a finite sequence of actions and their resulting outcomes a
history. A method (also called a strategy) m for an individual scientist is
a function that specifies, for any individual history, a probability distri-
bution over possible actions for the next stage. In other words, a method
specifies probabilities over the scientist’s actions given what she knows
about her own and her neighbors’ past actions and outcomes. Of course,
an agent may act deterministically, simply by placing unit probability on
a single action a € A4. A strategic network is a pair S = (G, M) consisting
of a network G and a sequence M = (m,), . specifying the strategy em-
ployed by each learner, m,, in the network.

To return to our running example, a particular psychologist directly
knows about the research products of only some of the other psychologists
working on the nature of concepts; those individuals will be her graphical
neighbors. The experiments and theories considered and tested in the past
by the psychologist and her neighbors are known to the psychologist, and
she can use this information in her learning method or strategy to de-
termine (probabilistically) which cognitive theory to pursue next. Impor-
tantly, we do not constrain the possible strategies in any significant way.
The psychologist is permitted, for example, to use a strategy that says
“do the same action (i.e., attempt to verify the same psychological theory)
for all time” or to have a bias against changing theories (since such a
change can incur significant intellectual and material costs).

Although we will continue to focus on this running example, it is im-
portant to note that the general model can be realized in many other ways.
Here are two further examples of how the model can be interpreted:

Medical Research: The scientists are medical researchers or doctors
who are testing various potential treatments for a disease. An action
represents the application of a single treatment to a patient, and the
outcome represents the degree to which the treatment succeeds for
that patient (including the evaluation of side effects). The set of
worlds represents the states in which different treatments are superior,
all things considered. At each stage of inquiry, a scientist administers
a treatment to a particular patient, observes the outcome, and then



THE INDEPENDENCE THESIS 661

chooses how to treat future patients given the success rates of the
treatments she has administered in the past. Her choice of treatment,
of course, is also informed by which treatments other doctors and
researchers have successfully employed; those other researchers are
the neighbors of the scientist in our model.

Scientific Modeling: When attempting to understand some phenom-
enon, there are often a variety of potential methods that could be
illuminating. For instance, a biologist wanting to understand some
odd animal behavior in the wild could turn to field observation,
laboratory experiments, population genetic models, game theoretic
models, and so on. Under this interpretation, each action represents
an attempt by a scientist to apply a particular method to a given
domain. The outcome represents the degree to which the scientist
succeeds or fails, and the state of the world represents the state in
which a particular method is more or less likely to provide genuine
understanding of the problem. Our running example of cognitive
modeling is, therefore, an instance of one of many interpretations of
the model.

Because each outcome is assigned an epistemic utility, we can speak of
a particular action as being optimal in a given state of the world. An
action is optimal in a state if its expected utility in that state is at least
as high as that of any other action. For example, it might be that exemplar-
based theories are the best theories for understanding concepts, and so
the action of attempting to verify an exemplar-based theory will be op-
timal."" Focusing on other theories might yield useful results occasionally,
but on average they would (in this world) be worse.

Some learning problems are easier to solve than others; for example,
if one action always dominates all others regardless of the state of the
world, then there is relatively little for scientists to learn. This is rarely
the case in science since the optimal actions typically depend on the state
of the world. We are principally interested in such difficult problems. More
precisely, recall that outcomes can be interpreted as utilities. Thus, for
any state of the world w, there is an expected value for each action that
is constant throughout time. Hence, in any state of the world w, there is
some collection of optimal actions that maximize expected utility. Say a
learning problem poses the problem of induction if no finite history reveals
that a given action is optimal with certainty. In other words, the problem

11. A theory might be “best” because it is true or accurate or unified, etc. Our model
is applicable, regardless of which of these standards one takes as appropriate for
evaluating scientific theories.
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of induction (in this context) is that, for any finite history, there are at
least two states of the world in which such a history is possible, but the
sets of optimal actions in those two states are disjoint. Say a learning
problem is difficult if it poses the problem of induction, and for every
state of the world and every action, the probability that the action yields
no payoff on a given round lies strictly between zero and one. That is,
no action is guaranteed to succeed or fail, and no history determines an
optimal action with certainty. For the remainder of the article, we assume
all learning problems pose the problem of induction and will note whether
a problem is also assumed to be difficult.

2. Individual versus Group Rationality. Undoubtedly, one goal of scientific
inquiry is to eventually find the “best” theories in a given domain. In our
model, “eventually finding the best theories” corresponds to performing
optimal actions with probability approaching one in the infinite limit—
this property is generally known as statistical consistency. In this section,
we investigate several versions of the Independence Thesis that assert that
individuals employing statistically consistent methods might not form
consistent groups and that consistent groups need not contain consistent
individuals. We find that, depending on exactly how the notion of con-
sistency is construed, individual and group epistemic quality may either
coincide or diverge.

Two questions are immediate. Why do we focus on statistical consis-
tency exclusively, rather than considering other methodological virtues?
And why is consistency characterized in terms of performing optimal
actions, rather than holding true beliefs about the state of the world (and,
hence, of which actions are in fact optimal)?

In response to the first question, we argue that statistical consistency
is often the closest approximation to reliability in empirical inquiry, and
therefore, employing a consistent method is a necessary condition for
attaining scientific justification and knowledge. In the context of science,
reliabilism is the thesis that an inductive method confers a scientist with
justification for believing a theory if and only if the method, in general,
tends to promote true beliefs. Unfortunately, even in the simplest statistical
problems, there are no inductive methods that are guaranteed (with high
probability) to (i) promote true rather than “approximately true” beliefs
and (i) promote even approximately true beliefs given limited amounts
of data.

Suppose, for example, you are given a coin, which may be fair or unfair,
and you are required to determine the coin’s bias, that is, the frequency
with which the coin lands heads. Suppose you flip the coin n, + n, times
and observe n, heads. An intuitive method, called the “straight rule” by
Reichenbach, is to conjecture that the probability that the coin will land
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heads is n,/(n, + n,). Suppose that, in fact, the coin is fair. With what
probability, does the straight rule generate true beliefs? If you flipped the
coin an odd number of times, it is impossible for n,/(n, + n,) to be 1/2,
and so the probability that your belief is correct is exactly zero. But it is
worse than that. As the number of flips increases, the probability that the
straight rule conjectures exactly 1/2 approaches zero. This argument does
not show a failing with the straight rule: it applies equally to any method
for determining the coin’s bias.

Therefore, reliability, in even the simplest settings, cannot be construed
as “tending to promote true beliefs,” if “tending” is understood to mean
“with high probability.” Rather, the best our inductive methods can guar-
antee is that our estimates approach the truth with increasing probability
as evidence accumulates. But this is just what it means for a method to
be statistically consistent.

However, one still might be worried that we have construed statistical
consistency in terms of performing optimal actions rather than possessing
true beliefs. Our focus is thus different from the (arguably) standard one
in philosophy of science: we consider convergence of action, not conver-
gence of belief. We are not attempting to model the psychological states
of scientists but rather focusing on changes in their patterns of activity.'?
This is why our running example from cognitive psychology focuses on
the actions that a scientist can take to verify a particular theory, rather
than the scientist accepting (or believing or entertaining or so on) that
theory. Of course, to the extent that scientists are careful, thoughtful,
honest, and so forth, their actions should track their beliefs in important
ways. But our analysis makes no assumptions about those internal psy-
chological states or traits, nor do we attempt to model them.

Moreover, we think that there are compelling reasons to focus on con-
vergence in observable actions rather than convergence in a scientist’s
beliefs. Suppose only finitely many actions «a,, a,, . . . ,a, are available
and that a scientist cycles through each possible action in succession
a, d,, . . .,a, d,d, and so on. As inquiry progresses, such a scientist
will acquire increasingly accurate estimates of the value of every action
(by the law of large numbers). Thus, the scientist will also know which
actions are optimal, even though she chooses suboptimal as often as she
choose optimal ones. So the scientist would converge in belief without
that convergence ever leading to appropriate actions.

Consider for a moment how strange a scientific community that follows
such a strategy would appear. Each researcher would continue to test all
potential competing hypotheses in a given domain, regardless of their

12. Those action patterns are presumably generated by psychological states, but we
are agnostic about the precise nature of that connection.
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apparent empirical support. Physicists would occasionally perform ex-
periments that relied on assumptions from Aristotelian physics, astron-
omers would continue developing geocentric models, geologists would use
theories that place the age of the earth at 8,000 years, and so on. Such
a practice would continue indefinitely, despite the increasing evidence of
the inadequacy of such theories. We believe that commitment to a scientific
theory (whether belief, acceptance, or whatever) ought to be reflected in
action and, thus, that good scientific practice requires a convergence in
not only the beliefs of the scientists but also the experimentation."

More radically, one might even question what role belief would have
for individuals who continue to rely on increasingly implausible theories.
What exactly does it mean for a scientist to believe in a theory that she
uses as often as its competitors? We do not wish to delve too deeply into
the issue of the relationship between belief and action, except to suggest
that our would-be detractors would have to devise a notion of acceptance
that radically divorces it from action.

With this background in mind, we now consider one formulation of
the Independence Thesis: Do optimal methods for an isolated researcher
prove beneficial if employed by a community of scientists who share their
findings? More precisely, suppose we have a fixed learning problem and
consider the isolated strategic network consisting of exactly one scientist.
We say that the scientist’s method is convergent in isolation (IC) if, re-
gardless of the state of the world, her chance (as determined by her
method) of performing an optimal action (relative to the actual state of
the world) approaches one as inquiry progresses.

In our running example, our concept-focused psychologist would be
called IC if she, when working alone, would converge to always testing
(and presumably publicly advocating) the optimal theory of concepts. For
example, suppose she selects a focal theory at time n by the following
method: the theory that has yielded the best outcomes in the past is tested
with probability n/(n + 1), and a random theory is selected with proba-
bility 1/(m + 1). The psychologist’s method is an example of what are
called decreasing epsilon greedy methods, and this particular decreasing
epsilon greedy strategy is IC; the psychologist will provably converge
toward testing the optimal theory with probability one. Interestingly, the
method of always testing the best-up-to-now theory is not IC: testing the
best-up-to-now theory can lead to abandoning potentially better theories
early on, simply because of random chance successes (or failures) by
suboptimal (or optimal) theories (Zollman 2007, 2010). The previous

13. Moreover, sometimes ethical constraints preclude the alternation strategy. A med-
ical researcher cannot ethically continue to experiment with antiquated treatments
indefinitely.
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method is IC, precisely because our imaginary psychologist attempts to
verify other theories sufficiently often to ensure that the best theory is
not prematurely abandoned, while still acting to verify the best-up-to-
now theory with increasing probability.

On first glance, convergence in isolation seems to be a minimal/nec-
essary requirement for being a “good” method for learning. However, IC
methods may have undesirable consequences when employed by a group
of researchers. To see why, say that a collection of methods M is convergent
in an isolated group (GIC) if whenever every scientist in a research network
uses a method in M and every method in M is used by at least one scientist,
then each scientist’s chance of performing an optimal action approaches
one as inquiry progresses. That is, a GIC collection of methods is one in
which every method finds at least one optimal action (in the limit) when-
ever the other methods in the collection are present in the network. Sur-
prisingly, as the following two theorems state, there is no necessary re-
lationship between IC and GIC learners.

Theorem 1. In any difficult learning problem, there exist IC methods
m such that the (singleton) collection M = {m} is not GIC.

One example is a variation on the decreasing epsilon greedy strategy
described above."

Theorem 2. In any learning problem that poses the problem of in-
duction, there exist GIC collections of methods M such that no
me Mis IC.

One example is a group of “preferred action” learners (described below).

The decreasing epsilon greedy strategy is an IC method that can lead
to disastrous results when employed in groups. The psychologist’s method
is IC because her probability of experimentation tapers to zero at the
“right” speed. If that probability tapers too quickly (e.g., if the probability
of randomly choosing a theory were 1/n°), then the method may fail to
experiment frequently enough to find the best theory. In particular, if the
psychologist’s rate of experimentation depends on the number of neigh-
bors she has (e.g., a random sample rate of 1/n*, where k is the number
of neighbors), then she will converge to testing an optimal theory in
isolation but will not necessarily converge to an optimal theory in a group.
Essentially, the potential problem here is one of groupthink: by herself,
each psychologist patiently figures out the right theory; in a group, how-

14. Proofs sketches of all theorems are provided in the appendix. Full details are
available in Mayo-Wilson et al. (2010).
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ever, she might converge on a suboptimal theory too quickly and get
stuck."

As an example of the second theorem, consider the following collection
of methods: for each action «a, the method m, chooses a with probability
1/n (where n is the stage of inquiry) and otherwise does a best-up-to-now
action. One can think of « as the “preferred action” of the method m,,
although m,, is capable of learning. For our psychologist, a is the “favorite
theory” of concepts. Any particular method m, is not IC since it can easily
be trapped in a suboptimal action (e.g., if the first instance of « is suc-
cessful). The core problem with the m, methods is that they do not ex-
periment: they either do their favorite action or a best-up-to-now one.
However, the set M = {m,},., is GIC, as when all such methods are
employed in the network, at least one scientist favors an optimal action
a* and makes sure it gets a “fair hearing.” The neighbors of this scientist
gradually learn that a* is optimal, and so each neighbor plays either a*
or some other optimal action with greater frequency as inquiry progresses.
Then the neighbors of the neighbors learn that a* is optimal, and so on,
so that knowledge of at least one optimal action propagates through the
entire research network. In our running example, the community as a
whole can learn, as long as each theory of concepts has at least one
dedicated proponent, as the proponents of any given theory can learn
from others’ research. Moreover, this arguably is an accurate description
of much of scientific practice in cognitive psychology: individual scientists
have a preferred theory that is their principal focus (and that they hope
is correct), but they can eventually test and verify different theories if
presented with compelling evidence in favor of them.

This latter example—and the associated theorem—supports a deep in-
sight about scientific communities made by Popper and others: a diverse
set of approaches to a scientific problem, combined with a healthy dose
of rigidity in refusing to alter one’s approach unless the evidence to do
so is strong, can benefit a scientific community even when such rigidity
would prove counterproductive to a scientist working in isolation. The
above argument also bolsters observations about the benefits of the “di-

15. This particular method might seem strange on first reading. Why would a rational
individual adjust the degree to which she explores the scientific landscape on the basis
of the number of other people she listens to? However, one can equivalently define this
strategy as dependent, not on the number of neighbors but on the amount of evidence.
Suppose a scientist adopts a random sample rate of 1/n*”, where x is the total number
of experiments the scientist observes and y is the total number of experiments she has
performed. Our scientist is merely conditioning her experimentation rate on the basis
of the amount of acquired evidence—not an intrinsically unreasonable thing to do.
However, in our model, this method is mathematically equivalent to adopting an
experimentation rate of 1/n*.
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vision of cognitive labor” that have been advocated by Kitcher, Strevens,
Weisberg, and Muldoon, among others.

The definitions of IC and GIC focus on learners who have some measure
of control over their research network. Although there are numerous
examples and case studies of scientific communities trying to maintain
control over their membership, most actual scientific communities are not
so “insular.” We must also consider cases in which a learner or collection
of learners is embedded in a larger community that could potentially
contain individuals who have different epistemic goals, standards, or
methods. Say a method is universally convergent (UC) if in any state of
the world, the researcher chooses optimal actions with probability ap-
proaching one as inquiry progresses, regardless of the network in which
the researcher is embedded. Similarly, say a set of methods M is group
universally convergent (GUC) if for all networks such that every method
in M is employed at least once and everyone employing methods in M
is connected via “informational paths” consisting only of scientists also
employing methods from M, then each researcher employing some method
in M chooses optimal actions with probability approaching one as inquiry
progresses.

UC and GUC methods are those that are, in a specific sense, resistant
to the other individuals in the network. A UC method converges to an
optimal action, for example, even when it is surrounded by methods that
produce suboptimal actions for all eternity. Notice that, in all learning
problems, every UC method is IC, and every GUC collection is GIC.
Why? Isolation is simply a special type of network structure, and since
UC methods and GUC collections converge regardless of network struc-
ture, they must converge for these special cases. As one might suspect,
UC and GUC are strictly stronger epistemic standards than IC or GIC.

Theorem 3. In all learning problems that pose the problem of in-
duction and in which payoffs are bounded from below and above
by positive real numbers, there exist IC methods that are not UC.
There also exist GIC collections that are not GUC.

Perhaps the most commonly studied strategies witnessing the above
theorem are called reinforcement learning (RL) strategies. Reinforcement
learners begin with an initial, positive, real-valued weight for each action.
On the first stage of inquiry, the agent chooses an action in proportion
to the weights. For example, if there are two actions @, and a, with weights
3 and 5, respectively, then the agent chooses action @, with probability
3/(3 +5) and a, with probability 5/(3 + 5). At subsequent stages, the
agent then adds the observed outcome for all the actions taken in his
neighborhood to the respective weights for the different actions. RL has
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Each m in M is ICc +—— Each m in M is UC

Mis GIC « M is GucC

Figure 3.

been used as a descriptive model of learning opponents’ behavior in games
and various cognitive learning processes.'® It might also be recommended
as a normative model for induction, as it is consistent when employed in
isolation (Beggs 2005). RL strategies are IC but not UC, and groups of
such learners can be GIC but not GUC.

Interestingly, however, the disconnect between group and individual
epistemic norms found in isolation does not carry over in the same way
to universal convergence, as shown by the following two theorems. In
particular, there is a connection, but only in one direction.

Theorem 4. In all learning problems, every collection containing only
UC methods is GUC.

Theorem 5. In any learning problem that poses the problem of in-
duction, there exist GUC collections M such that every m € M is
not UC.

One example is a set of “preferred action” methods (described above),
which is a GUC collection of not-UC (not-IC) methods.

The relationships between IC, GIC, UC, and GUC can thus be neatly
summarized by figure 3. The above five theorems provide qualified support
for certain formulations of the Independence Thesis, as they show that,
when epistemic quality is understood in terms of statistical consistency,
there are circumstances under which individual and group rationality di-
verge.

Of course, one might object that our arguments rely on one particular
formal model of inquiry that makes several unrealistic idealizations: net-
work structure is constant, informational access is symmetric, and so on.
One might continue that we have considered only stringent criteria of
success and that there are any number of other standards by which one
might evaluate epistemic performance of individuals and groups. Such an

16. This type of RL is different, though, from that studied in the animal behavior
literature (e.g., RL models of classical conditioning).
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objector might conclude that the above theorems say little about the
relationship between individual and social epistemology in the “real
world.”

First, note that a similar divergence between individual and group ep-
istemic performance (measured in terms of statistical consistency) must
emerge in any model of inquiry that is as complex as our model (or more
s0). For any model of inquiry capable of representing the complexities
captured by our model, we would be able to define all of the methods
considered above (perhaps in different terms), define appropriate notions
of consistency, and so on. Thus, each of the above theorems would have
an appropriate “translation” or analog in any model of inquiry that is
sufficiently complex. In this sense, the simplicity of our model is a virtue,
not a vice.

Moreover, we agree that our model is not the single “correct” repre-
sentation of scientific communities. In fact, we would argue that no formal
model of inquiry is superior to all others in every respect. Clearly, there
are other criteria of epistemic quality that ought be investigated, other
models of particular scientific learning in communities, and so forth. How-
ever, significant scientific learning problems can be accurately captured
and modeled in this framework, and the general moral of the framework
should hold true in a range of settings, namely, that successful science
depends on using methods that are sensitive to evidence and can learn,
while avoiding community groupthink.

3. Conclusion. In this article, we have investigated several versions of the
Independence Thesis that depend on different underlying notions of in-
dividual rationality (IC and UC) and group rationality (GIC and GUC).
We have found some qualified support for the Independence Thesis; IC
is independent of GIC. However, considering a stronger notion of ratio-
nality, we found that UC is not independent of GUC, although the en-
tailment goes in one direction only.

Our formulations of these different notions of rationality illustrate im-
portant distinctions that have been previously overlooked. For example,
the different properties of IC and UC (GIC and GUC, respectively) meth-
ods illustrate that, when considering individual (or group) rationality, one
must consider how robust a method (or set of methods) is to the presence
of others employing different methods. Subtle differences in definitions
of individual and group rationality, therefore, can color how one judges
the Independence Thesis.

In addition to illustrating the importance of this distinction, we have
provided some formal support to those philosophers who have pushed
the Independence Thesis (primarily on the basis of historical evidence).
It is our hope that this proof will demonstrate the thesis, in a mathe-
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matically rigorous way, and thus illustrate the limitations of discussions
of scientific method that consider only the properties of inductive methods
when employed in isolation, as is common in many formal models of
scientific inquiry (e.g., Bayesianism, belief revision, formal learning the-
ory). Finally, our arguments provide additional support to those who
argue that the empirical study of science must include both the individual
and the group properties of scientific groups if the prospects for scientific
progress are to be understood properly.
: Appendix

Proofs of Theorems. The proofs of the theorems employ several lemmas,
which are stated in the next section.

Theorem 1. In any difficult learning problem, there exist IC methods
m such that the (singleton) collection M = {m} is not GIC.

Proof. Define m to be the following method. At stage n, an indi-
vidual employing m plays the action with the highest estimated value
with probability (n* — 1) /n*, where k is the number of the individual’s
neighbors. If there are several actions that have the highest estimated
value, then m splits the probability (n* — 1) /n* evenly among all such
actions. The method m plays every other action with equal shares of
the remaining probability of 1/n*. We first show that m is IC and
then show that m is not GIC.

To show that m is IC, consider the isolated network with one
learner g employing m, and pick any state of the world w. Regardless
of history, the method m, by definition, assigns at least probability
1/(]A4] x n) to each action (where |4| is the number of actions) on
the nth stage of inquiry, as g has exactly one neighbor (herself). Thus,
the probability that g plays action ¢ on the nth stage of inquiry,
regardless of what g has done previously, is at least 1/(|4| x n). It
is easy to check that 3. _,1/(]4| x n) = %, and so by lemma 1, it
follows that g plays every action infinitely often. By lemma 2, it
follows that, for any action a, the individual g’s estimate of the value
of the action a approaches the true value. Now, by definition, the
method m plays actions with highest estimated value with probability
(n — 1)/n at stage n, and this ratio approaches one as n approaches
infinity. By lemma 3, the probability that m plays a truly optimal
action approaches one as n approaches infinity. As w was chosen
arbitrarily, it follows that m is IC.

Next, we show that m is not GIC. To do so, consider the network
consisting of exactly two learners g, and g,, each of whom employs
the strategy m, and each of whom is the other’s neighbor. We show
that g, fails to play optimal actions with probability approaching one
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in w, and by symmetry, the same proof works for g,. In fact, we show
that, with some positive probability, g, plays suboptimal actions at
every stage after /.

To do so, fix a state of the world w. Because the learning problem
is difficult, there is some history / such that (i) every truly optimal
action a € A, yields zero payoff along #, (ii) some suboptimal action
yields positive payoff along /4, and (iii) the history /# has nonzero
probability p*(h) >0 in w. Let j be the length of the history 4. For
any natural number #n, let 4,, be the set of actions that have the
highest estimated value at stage n. By definition of the method m,
the learner g plays actions from 4\A4,, with probability no greater
than 1/n?, as g, has two neighbors, namely, g, and herself. By choice
of h, therefore, m assigns the set of optimal actions probability no
greater than 1/(j + 1)? at the stage j + 1 if & occurs. Hence, the con-
ditional probability that g, plays an optimal action at stage j + 1
given / is no greater than 1/(j + 1)°. Because g, and g, choose their
actions independently of one another, the probability that neither
chooses an optimal action at stage j + 1 given 4 is no greater than
[+ D]

Similarly, if 4 occurs and no optimal action is played at stage
j + 1, then m assigns probability no greater than 1/(j + 2)* to optimal
actions at stage j + 2. So the conditional probability that g, plays an
optimal action at stage j + 2 given & and that no optimal action is
played at stage j + 1 is no greater than 1/(j + 2)?, and since g, and
g, choose their actions independently of one another, the probability
that neither chooses an optimal action is [1/(j + 2)*]>. And so on.
So the probability that 4 occurs and that suboptimal actions are
played from every stage onward by both g, and g, is given by

2
= 1
Py x H(l - —2),
n=j n

and this quantity can be shown to be strictly positive by basic cal-
culus. So m is not GIC. QED

Theorem 2. In any learning problem that poses the problem of in-
duction, there exist GIC collections of methods M such that no
me Mis IC.

Proof. 1In fact, we show a stronger result. We show that there are
collections M of methods such that M is GUC, but no member of
M is IC. In the body of the article, we described the strategy m, with
the following behavior. If a is the best-up-to-now action, then it is
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played with probability one. If @ is not a best-up-to-now action, then
it is played with probability 1/n, and the remaining probability of
(n — 1)/n is divided evenly among the best-up-to-now actions. We
claim that, in difficult learning problems, the set {m,},_, is GUC,
but no member of M is IC.

It is easy to show that no method m, is IC. Suppose there is one
individual employing the strategy m, in isolation. First notice that,
on the first stage of inquiry, a is one of the best-up-to-now actions,
as no action has resulted in a payoff. So the individual plays a.
Because outcomes are, by assumption, nonnegative, the action a re-
mains a best-up-to-now action on the second stage of inquiry, and
so the individual plays a¢ again with probability one. By induction,
it follows that the individual plays a on every stage of inquiry, re-
gardless of the outcomes she obtains. Since the learning problem
poses the problem of induction, there is some state of the world in
which a is not an optimal action. Hence, in that state of the world,
the isolated individual employing m, not only fails to converge to an
optimal action, but, moreover, with probability one, she plays a sub-
optimal action for eternity. So m, is not IC.

Next we show that the set of methods M = {m,},_, is GUC. Let
S be any strategic network in which the methods M = {m,},_, are
all employed at least once and such that, for any two individuals
g, and g, employing methods from M, there is some sequence of
individuals i, i,, . . . i, employing methods from M such that 7, is
g/’s neighbor, 7, is i,’s neighbor, and so on, until i,, who is g,’s neigh-
bor. Fix any state of the world w, and let g be some individual in
the network employing a method from M. We want to show that,
with probability approaching one, g plays an optimal action in w.

As the set of actions is finite, there is at least one action « that is
optimal in w, and by definition of M, there is at least one learner
g, employing m, in the network S. By lemma 1, with probability one,
the learner g, plays the action « infinitely often. Hence, by lemma 2,
g.’s estimate of the value of the action a approaches the true value
of the action a. By lemma 3 and the definition of the strategy m,, it
follows that g, plays optimal actions with probability approaching
one; in fact, she plays a with probability approaching one. By lemma
4, this means that g, plays optimal actions infinitely often.

Now consider neighbors of g, who employ methods from M. Since
neighbors of g, observe the action a being played infinitely often,
their estimates of the value of a will likewise approach the true value
(again by lemma 1). By lemma 3 and the definition of the strategies
in M, it follows that neighbors of g, also play optimal actions with
probability approaching one in w. By lemma 4, it follows that neigh-
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bors of g, who employ methods from M will, with probability one,
play optimal actions infinitely often. Hence, neighbors of neighbors
of g, will have an estimate of at least one optimal action that ap-
proaches the true value of that action. And so on.

That is, one can repeat the argument any finite number of times
to prove that, for example, neighbors of neighbors of neighbors of
g. who employ strategies in M play optimal actions with probability
approaching one. In this way, the optimal behavior of the individual
g, propagates through the subnetwork of agents employing methods
from M. Now, by assumption, there is some sequence of individuals
i, i,, . . . i,employing methods from M such that i, is g,’s neighbor,
i, is i,’s neighbor, and so on, until i,, who is g’s neighbor. So g must
converge to playing optimal actions in the limit as desired. QED

Theorem 3. In all learning problems that pose the problem of in-
duction and in which payoffs are bounded from below and above
by positive real numbers, there exist IC methods that are not UC.
There also exist GIC collections that are not GUC.

Proof. When payoffs are bounded from above and below by positive
real numbers, then a slight modification of the proof of theorem 1
in Beggs (2005) yields that any set of RL methods is GIC. See Mayo-
Wilson et al. (2010) for details.

So we limit ourselves to showing that no finite set of RL meth-
ods is GUC in a learning problem that poses the problem of
induction and in which payoffs are bounded from below and above
by k, and k,, respectively, where k, and k, are positive real numbers.
Let M be a finite sequence of RL methods. It suffices to find (i) a
strategic network S = (G, N) with a connected M subnetwork S" =
(G', M), (i) an individual, and (iii) a state of the world such that
lim,_,.p5(h*(n, g) € A,) # 1, where pS(h*(n, g) = a) is the proba-
bility that g plays action @ on the nth stage of inquiry in state of the
world w.

To construct S, first take a sequence of learners of the same car-
dinality as M and place them in a singly connected row, so that the
first is the neighbor to the second, the second is a neighbor to the
first and third, the third is a neighbor to the second and fourth, and
so on. Assign the first learner on the line to play the first strategy in
M, the second to play the second, and so on. Denote the resulting
strategic network by S' = (G', M); notice that S" is a connected M
network.

Next, we augment S’ to form a larger network S as follows. Find
the least natural number n € N such that nk, > 3k,. Add n agents
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to G' and add an edge from each of the n new agents to each old
agent g € G'. Call the resulting network G. Pick some action a e
A, and assign each new agent the strategy m,, which plays the action
a deterministically. Call the resulting strategic network S; notice that
S contains S’ as a connected M subnetwork.

Let w be a state of the world in which a ¢ A4, (such an a exists
because the learning problem poses the problem of induction by
assumption). By construction, regardless of history, g has at least n
neighbors each playing the action @ at any stage. By assumption,
payoffs are bounded below by k,, and so it follows that the sum of
the payoffs to the agents playing a in g’s neighborhood is at least
nk, at every stage. In contrast, g has at most three neighbors playing
any other action a’ € A. Since payoffs are bounded above by k,, the
sum of payoffs to agents playing actions other than « in g’s neigh-
borhood is at most 3k, < nk,. It follows that, in the limit, one-half
is strictly less than the ratio of (i) the total utility accumulated by
agents playing a in g’s neighborhood to (ii) the total utility accu-
mulated by playing all actions. As g is a reinforcement learner, g,
therefore, plays action a* ¢ A, with probability greater than one-
half in the limit, and so g plays a suboptimal action with nonzero
probability in the limit. QED

Theorem 4. In all learning problems, every collection containing only
UC methods is GUC.

Proof. Since UC methods converge regardless of the network in
which they are placed, they must each also converge when infor-
mationally connected with other UC methods. QED

Theorem 5. In any learning problem that poses the problem of in-
duction, there exist GUC collections M such that every m € M is
not UC.

Proof. This follows immediately from the proof of theorem 2, as
the methods M constructed there are GUC, but none is IC (let alone
UC). QED

Lemmas. We state the following lemmas without proof. The first is es-
sentially an immediate consequence of the (second) Borel-Cantelli lemma,
and the second is an immediate consequence of the strong law of large
numbers. However, some tedious (but straightforward) measure-theoretic
constructions are necessary to show that the events described below have
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well-defined probabilities. These technical details are omitted for brevity,
but for the interested reader, they are available in Mayo-Wilson et al.
(2010).

Lemma 1. Fix a state of the world w, a strategic network S, and a
learner g in S. Let p5(h*(n, g) = a) be the probability that g plays
action a on the nth stage of inquiry in state of the world w. Let E,
be the event that g does not play an action « at any stage before n.
Suppose that, for all natural numbers k, 3. _, p5(h*(n, g) = a|E,) =
o, Then, with probability one in w, the individual g plays the action
a infinitely often.

Lemma 2. Fix a state of the world w, a strategic network S, and a
learner g in S. Suppose that, with probability one in w, an action a
is played infinitely often in individual g’s neighborhood. Then, with
probability one, g’s estimate of the value of a at stage n approaches
(as n approaches infinity) the true value of a.

Lemma 3. Fix a strategic network S, an individual g in that network,
and a state of the world w. Let m be the method employed by g. Let
p,(m) represent the probability that m assigns to actions with highest
estimated value at stage n, and suppose that p,(m) approaches one
as n approaches infinity. Further, suppose that, with probability one,
for every action a, the individual g’s estimate of the value of a at
stage n approaches the true value of a in w. Then the probability
pS(h*(n, g) € A,) that g plays a truly optimal action approaches one
as n approaches infinity.

Lemma 4. Fix a state of the world w, a strategic network S, and a
learner g in S. Let p5(h*(n, g) = a) be the probability that g plays
action « on the nth stage of inquiry in state of the world w. Suppose
that lim,.. p*(h*(n, g) = @) = 1. Then, with probability one in w, g
plays the action « infinitely often.
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