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Abstract

In many domains, data are distributed among datasets thet shly some vari-
ables; other recorded variables may occur in only one data8hile there are
asymptotically correct, informative algorithms for diseoing causal relation-
ships from a single dataset, even with missing values ardkehidariables, there
have been no such reliable procedures for distributed dideowerlapping vari-
ables. We present a novel, asymptotically correct proeethat discovers a min-
imal equivalence class of causal DAG structures using limcidpendence infor-
mation from distributed data of this form and evaluate itfgenance using syn-
thetic and real-world data against causal discovery algos for single datasets
and applying Structural EM, a heuristic DAG structure léagrprocedure for data
with missing values, to the concatenated data.

1 Introduction

In many domains, researchers are interested in predidtengftects of interventions, or manipulat-
ing variables, on other observed variables. Such predistioequire knowledge of causal relation-
ships between observed variables. There are existing dstioglly correct algorithms for learning
such relationships from data, possibly with missing valmd hidden variables [1][2][3], but these
algorithms all assume that every variable is measured ingdesstudy. Datasets for such studies are
not always readily available, often due to privacy, ethifiaancial, and practical concerns. How-
ever, given the increasing availability of large amountdatf, it is often possible to obtain several
similar studies that individually measure subsets of théalées a researcher is interested in and
together include all such variables. For instance, modeiseoUnited States and United Kingdom
economies share some but not all variables, due to diffdéirearicial recording conventions; fMRI
studies with similar stimuli may record different variaglsince the images vary according to mag-
net strength, data reduction procedures, etc.; and U.tesstaport some of the same educational
testing variables, but also report state-specific vargabla these cases, if each dataset tnex-
lapping variable(s)with at least one other dataset, e.g. if two dataggtand D,, which measure
variablesV; andV,, respectively, have at least one variable in comménii V, # ), then we
should be able to learn many of the causal relationshipsd®tihe observed variables using this
set of datasets. The existing algorithms, however, canrgemeral be directly applied to such cases,
since they may require joint observations for variables éin@ not all measured in a single dataset.

While this problem has been discussed in [4] and [5], theeenar general, useful algorithms for
learning causal relationships from data of this form. A tgbresponse is to concatenate the datasets
to form a single common dataset with missing values for tmalsées that are not measured in each
of the original datasets. Statistical matching [6] or nplétiimputation [7] procedures may then
be used to fill in the missing values by assuming an underlgingdel (or small class of models),
estimating model parameters using the available data,rerdusing this model to interpolate the



missing values. While the assumption of some underlyingehothy be unproblematic in many
standard prediction scenarios, i.e. classification, itieliable for causal inference; the causal re-
lationships learned using the interpolated dataset tledb@iween variables which are never jointly
measured in single dataset will only be correct if the cqoesling relationships between variables
in the assumed model happen to be causal relationships icothect model. The Structural EM
algorithm [8] avoids this problem by iteratively updatitggtassumed model using the current inter-
polated dataset and then reestimating values for the mgisisita to form a new interpolated dataset
until the model converges. The Structural EM algorithm ifygustified, however, when missing
data are missing at random (or indicator variables can bé tesmake them so) [8]. The pattern
of missing values in the concatenated datasets descritwe #b highly structured. Furthermore,
Structural EM is a heuristic procedure and may convergedal lmaxima. While this may not be
problematic in practice when doing prediction, it is prab#gic when learning causal relationships.
Our experiments in section 4 show that Structural EM perfopworly in this scenario.

We present a novel, asymptotically correct algorithm—iiftegration of Overlapping Networks
(ION) algorithm—for learning causal relationships (or more properly, thmplete set of possible
causal DAG structures) from data of this form. Section 2 mes the relevant background and
terminology. Section 3 discusses the algorithm. Sectioredemts experimental evaluations of the
algorithm using synthetic and real-world data. Finallygtse 5 provides conclusions.

2 Formal preliminaries

We now introduce some terminology. directed graphg = (V, £) is a set of node¥, which rep-
resent variables, and a set of directed edfyesnnecting distinct nodes. If two nodes are connected
by an edge then the nodes adjacent For pairs of node$ X, Y} C V, X is a parent (child) oY,

if there is a directed edge frod to Y (Y to X) in £. A trail in G is a sequence of nodes such that
each consecutive pair of nodes in the sequence is adjacgérand no node appears more than once
in the sequence. A trail isdirected patlif every edge between consecutive pairs of nodes points in
the same directionX is anancestor(descendantof Y if there is a directed path froff toY (Y

to X). G is adirected acyclic grapDAG) if for every pair{ X, Y} C V, X is not both an ancestor
and a descendent &f (no directed cycles). A&ollider (v-structurg is a triple of nodes X, Y, Z)
such thatX andZ are parents of'. A trail is activegivenC C V if (i) for every collider (X, Y, Z)

in the trail eitherY” € C or some descendant &fis in C and (ii) no other node in the trail is i8.

For disjoint sets of nodes, Y, andZ, X is d-separated (d-connected) frofrgivenZ if and only if
there are no (at least one) active trails betweenXny X and anyY” € Y givenZ.

A Bayesian networl is a pair(G, P), whereG = (V, &) is a DAG andP is a joint probability
distribution over the variables represented by the nodas such thatP can be decomposed as
follows:

PV) = H P(V|Parents(V))

vev

ForB = (G, P), if X is d-separated fron givenZ in G, thenX is conditionally independent of
givenZ in P [9]. For disjoint sets of node¥X, Y, andZ in V, P is faithful to G if X is d-separated
fromY givenZ in G wheneveiX is conditionally independent of givenZ in P [1]. B is acausal
Bayesian network if an edge froii to Y indicates thafX is a direct cause df relative to).

Most algorithms forcausal discoveryor learning causal relationships from nonexperimenttd,da
assume that the distribution over the observed variablés decomposable according to a DAG
G andP is faithful to G. The goal is to lear@ using the data fronP. Most causal discovery
algorithms return a set of possible DAGs which entail the esalkseparations and d-connections,
e.g. theMarkov equivalence classather than a single DAG. The DAGs in this set have the same
adjacencies but only some of the same directed edges. Téetatiredges common to each DAG
represent causal relationships that are learned from ttze tfave admit the possibility that there
may be unobserved (latent) common causes between obseriatlles, then this set of possible
DAGs is usually larger.

A partial ancestral grapi{PAG) represents the set of DAGs in a particular Markov egjence class
when latent common causes may be present. Nodes in a PAGpone:to observed variables.
Edges are of four types:», o», o— and «—», where ao indicates either am or — orientation,
bidirected edges indicate the presence of a latent commagecand fully directed edges#)



indicate that the directed edge is present in every DAG,a&ecgwusal relationship. F§X, Y} C V,
apossiblyactive trail betweerX andY givenZ C V/{X,Y} is a trail in a PAG betweeX andY
such that some orientation o on edges between consecutive nodes in the trail, to eithary,
makes the trail active given.

3 Integration of Overlapping Networks (ION) algorithm

The ION algorithm uses conditional independence inforometid discover the complete set of PAGs
over a set of variable¥ that are consistent with a set of datasets over subseysvafich have
overlapping variables. ION accepts as input a set of PAGslwtorrespond to each of such datasets.
A standard causal discovery algorithm that checks for tatemmmon causes, such as FCI [1] or GES
[3] with latent variable postprocessing stgpsust first be applied to each of the original datasets
to learn these PAGs that will be input to ION. Expert domainwledge can also be encoded in the
input PAGs, if available. The ION algorithm is shown as altjon 1 and described below.

Input : PAGsG; € GwithnodesV; C Vfori=1,...,k
Output: PAGsH; € Hwith nodesv, =V fori=1,...,m

1 K < the complete graph ovér with o's at every endpoint

2 A0

3 Transfer nonadjacencies and endpoint orientations fraah @ac G to K and propagate the
changes irkC using the rules described in [10]

PAT({X, Y}, Z) < all possiblyactive trails betweeX andY givenZ for all {X,Y} C V and
Z C V/{X, Y} such thatX andY are d-separated givéhin someg; € G

PC — all minimal hitting set®f changes td&C, such that alPAT; € PAT are not active

for PC; € PC do

A; — K after making and propagating the chang€5

if A; is consistent with everyy; € G then add.A; to A

N

© 0 N o g

end

10 for A; € Ado

11 RemoveA; fromA

12 Mark all edges in4; as ‘?’

13 For each{X, Y} C V such thaiX andY are adjacent i4;, if X andY are d-connected
given( in someg; € G, then remove ‘?’ from the edge betwe¥randY in A;

14 PR < every combination of removing or not removing ‘?" marked eslffom.A;

15 for PR; € PR do

16 ‘H; — A; after making and propagating the chanB&s
17 if H; is consistent with every; € G then addH; toH
18 end

19 end

Algorithm 1: The Integration of Overlapping Networks (ION) algorithm

The algorithm begins with the complete graph oVewith all o endpoints and transfers nonadja-
cencies and endpoint orientations from eg¢le G at line 3, e.g. ifX andY are not adjacent ig;
then remove the edge betwe&nandY’, if X is directed intaY” in G; then set the endpoint &t on

the edge betweeXN andY to ». Once these orientations and edge removals are made, thgasha
to the complete graph apropagatedusing the rules in [10], which provably make every change
that is entailed by the current changes made to the graplesl4rd find every possibly active trail
for every{X,Y} C VgivenZ C V/{X,Y} such thatX andY are d-separated givehin some

G, € G. The constructed s&C includes allminimal hitting set®of graphical changes, e.g. unique
sets of minimal changes that are not subsets of other setsaofyes, which make these paths no
longer active. For each minimal hitting set, a new graph isstmicted by making the changes in
the set and propagating these changes. If the graph is tamtsigith eachy; € G, e.g. the graph
does not imply a d-separation for sofi&, Y’} C V givenZ C V/{X,Y} such thatX andY are
d-connected in somg; € G, then this graph is added to the current set of possible graphes 10-

1We use the standard GES algorithm to learn a DAG structure the data and then use the FCI rules to
check for possible latent common causes.



19 attempt to discover any additional PAGs that may be cterdisvith eacty; € G after deleting
edges from PAGs in the current set and propagating the ckaH@®me pair of node§X, Y} C V
that are adjacent in a current PAG are d-connected dgiiersomeG; € G, then we do not consider
sets of edge removals which remove this edge.

The ION algorithm is provablgoundin the sense that the output PAGs are consistent with every
G, € G, e.g. noH; € H entails a d-separation or d-connection that contradictsepération or
d-connection entailed by songg € G. This property follows from the fact that d-separation and
d-connection are mutually exclusive, exhaustive relation

Theorem 3.1 (soundness)If X andY are d-separated (d-connected) giveim someg; € G, then
X andY are d-separated (d-connected) giveim everyH,; € H.

Proof Sketch.Every structure4; constructed at line 7 provably entails every d-separatigaiked

by somej; € G. Such structures are only addedtdf they do not entail a d-separation correspond-
ing to a d-connection in somg € G. The only changes made (other than changes resulting from
propagating other changes which are provably correct bj) jhQines 10-19 are edge removals,
which can only create new d-separations. If a new d-separé&icreated which corresponds to a
d-connection in somé; € G, then the PAG entailing this new d-separation is not addéti to [

The ION algorithm is provablgompletein the sense that if there is some structlitg over the
variablesy that is consistent with evely; € G, thenH,; € H.

Theorem 3.2 (completeness)Let H; be a PAG over the variableg such that for every pair
{X,Y} CV,if X andY are d-separated (d-connected) giveat V/{X,Y} in someg; € G, then
X andY are d-separated (d-connected) giveim H;. Then,H; € H.

Proof Sketch.Every change made at line 3 is provably necessary to ensuralsess. At least
one graph added tA at line 8 provably has every adjacency (possibly moreh{inand no none
endpoints on an edge foundHg; that is not also present iH;. Some sequence of edge removals
will provably produceH; at line 16 and it will be added to the output set since it is &iaat with
everyg; € G. O

Thus, by theorems 3.1 and 3.2, ION is an asymptotically coedgorithm for learning the complete
set of PAGs oved that are consistent with a set of datasets over subsétsvath overlapping
variables, if the input PAGs are discovered using an asycaltyt correct algorithm that detects the
presence of latent common causes, i.e. FCI, with each of tti@msets.

Finding all minimal hitting sets is an NP-complete probleli][ Since learning a DAG structure
from data is also an NP-complete problem [12], the ION alpani as given above, requires a
superexponential (i) number of operations and is often computationally intbtt even for small
sizes of|V|. In practice, however, we can break the minimal hitting sebfem into a sequence
of smaller subproblems and use a branch and bound appraaicis tinactable in many cases and
still results in an asymptotically correct algorithm. Wettl several such strategies. The method
which most effectively balanced time and space complexitgig¢offs was to first find all minimal
hitting sets which make all possibly active trails of lengttihat correspond to d-separations in some
G; € G not active, then find the structures resulting from makindjpropagating these changes that
are consistent with evely; € G, and iteratively do the same for each of these structures@sing
the length of possibly active trails considered until saf all sizes are considered.

4 Experimental results

We first used synthetic data to evaluate the performanceldflith known ground truth. In the first
experiment, we generated 100 random 4-node DAGs using thd®@&lgorithm described in [13]
with random discrete parameters (conditional probahitibles for the factors in the decomposition
shown in section 2). For each DAG, we then randomly chose tlgets of size 2 or 3 of the nodes
in the DAG such that the union of the subsets included all 4esaghd at least one overlapping
variable between the two subsets was present. We used tbsaanpling to generate two i.i.d.
samples of size&v = 50, N = 100, N = 500, N = 1000 and N = 2500 from the DAGs for
only the variables in each subset. We used both FCI and GESatént variable postprocessing to
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Figure 1: (a) edge omissions, (b) edge commissions, (chtatien errors, and (d) runtimes

generate PAGs for each of these samples which were inputNoT@®evaluate the accuracy of ION,
we counted the number of edge omission, edge commision, @emtation errorsk instead of-)

for each PAG in the ION output set and averaged the resuliss&tesults were then averaged across
all of the 100 4-node structures. Figure 1 shows the averaggdts for these methods along with
3 other methods we included for comparist@N-FCI andION-GESrefer the the performance of
ION when the input PAGs are obtained using the FCI algorithahthe GES algorithm with latent
variable postprocessing, respectively. Boructural EM we took each of the datasets over subsets
of the nodes in each DAG and formed a concatenated datasdgsasbed in section 1, which
was input to the Structural EM algorithfnFor FCI-baselineand GES-baselingwe used forward
sampling to generate another i.i.d. sample of sixes- 50, N = 100, N = 500, N = 1000 and

N = 2500 for all of the variables in each DAG and used these datasétpasfor the FCl and GES
with latent variable postprocessing algorithms, respelti to obtain a measure for how well these
algorithms perform when no data is missing. The averagémnastfor each method are also reported
in figure 1. Error bars sho®5% confidence intervals. We first note the performance of Stratt
EM. Almost no edge omission errors are made, but more edgenissions errors are made than any
of the other methods and the edge commission errors do natakeras the sample size increases.
When we looked at the results, we found that Structural EMagdweturned either the complete
graph or a graph that was almost complete, indicating thatcttral EM is not a reliable method
for causal discovery in this scenario where there is a highlyctured pattern to the missing data.
Furthermore, the runtime for Structural EM was considagraiher than any of the other methods.
For the larger sample sizes (where more missing values roeled éstimated at each iteration), a
single run required several hours in some instances. Duts fignificant computation time, we

2\We ran Structural EM with 5 random restarts and chose the hwittethe highest BDeu score to avoid
converging to local maxima. Random “chains” of nodes weeluss the initial models. Structural EM was
never stopped before convergence.



o
3

Il FCi-baseline
[TION-FCI 5
[ ]GES-baseline

o 1N
w >

o
N
Orientation errors
w

Edge commissions

o
[
[N

Edge omissions
O P N W b OO N ®©

0
N=50 N=100 N=500 N=1000N=2500 0 N=50 N=100 N=500 N=1000N=2500 N=50 N=100 N=500 N=1000N=2500
Sample size Sample size Sample size
(a) (b) (©)
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Figure 3: (a) edge omissions, (b) edge comissions, andi@)tation errors

were unable to use Structural EM with larger DAG structuie# $s excluded in the experiments
below. The FCl-baseline and GES-baseline methods perfbaimlarly to previous simulations
of them. The ION-FCI and ION-GES methods performed simjléolthe FCl-baseline and GES-
baseline methods but made slightly more errors and showeaskonvergence (due to the missing
data). Very few edge commission errors were made. Slightiseredge omission errors were made,
but these errors decrease as the sample size increasese&genarientation errors were made even
for the larger sample sizes. This is due to the fact that ebtifealgorithms returns an equivalence
class of DAGs rather than a single DAG. Even if the correcivedence class is discovered, errors
result after comparing the ground truth DAG to every DAG ie #guivalence class and averaging.
We also note that there are fewer orientation errors for th8-®aseline and ION-GES methods on
the two smallest sample sizes than all of the other sampds.si&hile this may seem surprising, it
is simply a result of the fact that more edge omission errarsraade for these cases.

We repeated the above experiment for 3 similar cases whetsag6-node DAG structures rather
than 4-node DAG structures: (i) two i.i.d. samples were gateel for random subsets of sizes 2-5
with only 1 variable that is not overlapping between the twbsets; (ii) two i.i.d. samples were
generated for random subsets of sizes 2-5 with only 2 varsathlat are not overlapping between
the two subsets; (iii) three i.i.d. samples were generatedaindom subsets of sizes 2-5 with only
1 variable that is not overlapping between any pair of shsé&tigures 2, 3, and 4 show edge
omission, edge commission, and orientation errors for e&tiese cases, respectively. In general,
the performance in each case is similar to the performandadéot-node case.

We also tested the performance of ION-FCI using a real woaliigbt measuring IQ and various
neuroanatomical and other traits [14]. We divided the \deisinto two subsets with overlapping

variables based on domain grounds: (a) variables that rhaginicluded in a study on the relationship
between neuroanatomical traits and 1Q; and (b) variables $budy on the relationship between 1Q,

sex, and genotype, with brain volume and head circumferamateded as possible confounders.
Figures 5a and 5b show the FCI output PAGs when only the dataaith of these subsets of the
variables is provided as input, respectively. Figure Saghhe output PAG of ION-FCI when these

two resulting PAGs are used as input. We also ran FCI on th@aendataset to have a comparison.
Figure 5d shows this PAG.
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Figure 5: (a) FCI output PAG for variables in subset a, (b) 8@put PAG for variables in subset b,
(c) ION output PAG when using the FCI ouput PAGs for varialesubset a and variables in subset
b as input, and (d) FCI output PAG for all variables

In this particular case, the output of ION-FCI consists ofyansingle PAG, which is identical to
the result when FCIl is given the complete dataset as inpus ¢&se shows that in some instances,
ION-FCI can recover as much information about the true DA@cstire as FCI even when less
information can be extracted from the ION-FCI input. We nibtat the graphical structure of the
complete PAG (figures 5¢ and 5d) is the union of the structsinesvn in figures 5a and 5b. While
visually this may appear to be a trivial example for ION whaltef the relevant information can be
extracted in the first steps, there is in fact much processiqgired in later stages in the algorithm
to determine the structure around the nonoverlapping bksa

5 Conclusions

In practice, researchers are often unable to find or cortsirsingle, complete dataset containing
every variable they may be interested in (or doing so is vestlg). We thus need some way
of integrating information about causal relationshipg tten be discovered from a collection of
datasets with related variables [5]. Standard causal @sgalgorithms cannot be used, since they
take only a single dataset as input. To address this opetepnolve proposed the ION algorithm,
an asymptotically correct algorithm for discovering thenpdete set of causal DAG structures that
are consistent with such data.

While the results presented in section 4 indicate that IONsiful in smaller domains when the
branch and bound approach described in section 3 is usednbeanwf issues must be addressed
before ION or a simlar algorithm is useful for higher dimemsl datasets. Probably the most sig-
nificant problem is resolving contradictory information @mg overlapping variables in different



input PAGs, i.e. X is a parent of” in one PAG and a child o¥" in another PAG, resulting from
statistical errors or when the input samples are not ideatifi distributed. ION currently ignores
such information rather than attempting to resolve it. Tiniseases uncertainty and thus the size of
the resulting output set of PAGs. Furthermore, simply igmpsuch information does not always
avoid conflicts. In some of such cases, ION will not discovgy RAGs which entail the correct
d-separations and d-connections. Thus, no output PAGsetwened. When performing condi-
tional independence tests or evaluating score functidatistical errors occur more frequently as
the dimensionality of a dataset increases, unless the sasig# also increases at an exponential
rate (resulting from the so-callenlirse of dimensionali}y Thus, until reliable methods for resolv-
ing conflicting information from input PAGs are develope®N and similar algorithms will not

in general be useful for higher dimensional datasets. Euribre, while the branch and bound
approach described in section 3 is a significant improvemestother methods we tested for com-
puting minimal hitting sets, its memory requirements ailecinsiderable in some instances. Other
algorithmic strategies should be explored in future redear
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