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We consider causal structure estimation from time series data in which measurements 
are obtained at a coarser timescale than the causal timescale of the underlying system. 
Previous work has shown that such subsampling can lead to significant errors about the 
system’s causal structure if not properly taken into account. In this paper, we first consider 
the search for system timescale causal structures that correspond to a given measurement 
timescale structure. We provide a constraint satisfaction procedure whose computational 
performance is several orders of magnitude better than previous approaches. We then 
consider finite-sample data as input, and propose the first constraint optimization approach 
for recovering system timescale causal structure. This algorithm optimally recovers from 
possible conflicts due to statistical errors. We then apply the method to real-world data, 
investigate the robustness and scalability of our method, consider further approaches to 
reduce underdetermination in the output, and perform an extensive comparison between 
different solvers on this inference problem. Overall, these advances build towards a full 
understanding of non-parametric estimation of system timescale causal structures from 
subsampled time series data.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Time-series data has long constituted the basis for causal modeling in many fields of science [12,15,22]. These data 
often provide very precise measurements at regular time points, but the underlying causal interactions that give rise to 
those measurements can occur at a much faster timescale than the measurement frequency. As just one example: fMRI 
experiments measure neural activity (given various assumptions) roughly once per two seconds, but the underlying neural 
connections clearly operate much more quickly. Time order information can simplify causal analysis since it can provide 
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Fig. 1. (a) The structure of the causal system-scale time series. (b) The structure of the corresponding measurement scale time series if only every second 
sample is observed i.e. nodes at time slice t − 1 are marginalized. If subsampling is ignored and (b) is thought to depict the true causal structure, all direct 
causal relationships among {X, Y , Z} are misspecified.

directionality, but time series data that undersamples the generating process can be especially misleading about the true 
direct causal connections [7,19].

For example, Fig. 1a shows the causal structure of a process unrolled over discrete time steps, and Fig. 1b shows the cor-
responding structure of the same process, obtained by marginalizing every second time step. If we do not take into account 
the possibility of subsampling, then we would conclude that Fig. 1b gives the correct structure — and thus totally miss the 
presences of all true edges. This drastic structure misspecification may lead us to perform a possibly costly intervention 
on Z to control Y , when the influence of Z on Y is, in fact, completely mediated by X and so, intervening on X would be a 
more effective choice. Also, a (parametric) model with the structure in Fig. 1b gives inaccurate predictions when intervening 
on both X and Z : the value of Y would be predicted to depend on Z and not on X , when in reality Y depends on X and 
not on Z .

Standard methods for estimating causal structure from time series either focus exclusively on estimating a transition 
model at the measurement timescale (e.g., Granger causality [12,13]) or combine a model of measurement timescale transi-
tions with so-called “instantaneous” or “contemporaneous” causal relations that aim to capture interactions that are faster 
than the measurement process (e.g., SVAR [22,15,18]), though only very specific types of interactions can be captured with 
these latter models. In contrast, we follow Plis et al. [30,31] and Gong et al. [11], and explore the possibility of identifying 
(features of) the causal process at the true timescale from data that subsample this process.

Plis et al. [30,31] developed algorithms that can learn the set of causal timescale structures that could yield a given 
measurement timescale graph, either at a known or unknown undersampling rate. While these algorithms show that the 
inference problem is solvable, they face a number of computational challenges that limit their use. They do, however, 
show the importance of constraints for this problem, and so suggest that a constraint satisfaction approach might be more 
effective and efficient. Gong et al. [11] consider finding a linear SVAR from subsampled data. They show that if the error 
variables are non-Gaussian, the true causal effects matrix can be discovered even from subsampled data. However, their 
method is highly restricted in terms of numbers of variables and parametric form.

In this paper, we provide an exact discovery algorithm based on using a general-purpose Boolean constraint solver [4,
10], and demonstrate that it is orders of magnitudes faster than the current state-of-the-art method by Plis et al. [31]. 
At the same time, our approach is much simpler and, as we show, it allows inference in more general settings. We then 
develop the approach to integrate possibly conflicting constraints obtained from the data. In addition to an application of the 
method to the real-world data, we investigate the robustness and scalability of our method, consider further approaches to 
reduce underdetermination in the output, and perform an extensive comparison between different solvers on this inference 
problem. Moreover, unlike the method by Gong et al. [11], our approach does not depend on a particular parameterization 
of the underlying model and scales to a more reasonable number of variables.

The code implementing the approach presented in this article, including the answer set programming and Boolean 
satisfiability encodings, is available at

http :/ /www.cs .helsinki .fi /group /coreo /subsampled/.

This article considerably extends a preliminary version presented at the International Conference on Probabilistic Graphical 
Models 2016 (PGM 2016) [17]. Most noticeably, Sections 6–9 of this article provide entirely new contents, including a 
real-world case study (Section 6), an evaluation of the impact of the choice of constraint satisfaction and optimization 
solvers on the efficiency of the approach (Section 7), and a discussion on learning from mixed frequency data (Section 8). 
Furthermore, new simulations on accuracy and robustness (Section 5, Figures 7–9) are now included.

2. Representation

We assume that the system of interest relates a set of variables Vt = {Xt , Y t , Zt, . . .} defined at discrete time points 
t ∈ Z with continuous (∈ R

n) or discrete (∈ Z
n) values [9]. We distinguish the representation of the true causal process at 

the system or causal timescale from the time series data that are obtained at the measurement timescale. Following Plis et al. 

http://www.cs.helsinki.fi/group/coreo/subsampled/
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Fig. 2. Graph (a) shows the unrolled system timescale structure, where edges repeat through time steps. Graph (b) shows the rolled representation of the 
same structural information. Graph (c) shows the measurement timescale structure for subsampling rate u = 2, i.e. nodes at time slice t − 1 in graph (a) 
are marginalized. Graph (d) depicts the rolled representation of the same structural information as in graph (c).

[31], we assume that the true between-variable causal interactions at the system timescale constitute a first-order Markov 
process; that is, that the independence Vt ⊥⊥ Vt−k|Vt−1 holds for all k > 1. The parametric models for these causal structures 
are structural vector autoregressive (SVAR) processes or dynamic (discrete/continuous variable) Bayes nets. Since the system 
timescale can be arbitrarily fast (and causal influences take time), we assume that there is no “contemporaneous” causation 
of the form Xt → Y t [14]. We also assume that Vt−1 contains all common causes of variables in Vt . These assumptions 
jointly express the widely used causal sufficiency assumption (see [35]) in the time series setting. In this non-parametric 
setting, we consider surgical interventions (on the observed variables in V) that keep variables fixed at the selected values 
through the (causal timescale) time steps.

The system timescale causal structure can thus be represented by a causal graph G1 (as in a dynamic Bayes net) with 
edges only of the form Xt−1 → Y t , where X = Y is permitted (see Fig. 2a for an example). Since the causal process is 
time-invariant, the edges repeat through t . In accordance with Plis et al. [31], for any G1 we use a simpler, rolled graph 
representation, denoted by G1, where for all X, Y : X → Y ∈ G1 iff Xt−1 → Y t ∈ G1. That is, the rolled graph represents time 
only implicitly in the edges, rather than through variable duplication. Both the unrolled and rolled representations contain 
exactly the same structural information. Fig. 2b shows the rolled graph representation G1 of G1 in Fig. 2a.

Time series data are obtained from the above process at the measurement timescale, defined by some (possibly unknown) 
integral sampling rate u. The measured time series sample Vt is at times t, t − u, t − 2u, . . . ; we are interested in the 
case of u > 1, i.e., the case of subsampled data. A different route to subsampling would use continuous-time models as 
the underlying system timescale structure. However, some series (e.g., transactions such as salary payments) are inherently 
discrete-time processes [11], and many continuous-time systems can be approximated arbitrarily closely as discrete-time 
processes. Thus, we focus here on discrete-time causal structures as a justifiable, yet simple, basis for our non-parametric 
inference procedure.

The (causal) structure of this subsampled time series can be obtained (leaving aside sampling variation) from G1 by 
marginalizing the intermediate time steps. Fig. 2c shows the measurement timescale structure G2 corresponding to sub-
sampling rate u = 2 for the system timescale causal structure in Fig. 2a. Each directed edge in G2 corresponds to a directed 
path of length 2 in G1. For arbitrary u, X, Y , the formal relationship between Gu and G1 edges is

Xt−u → Y t ∈ Gu ⇔ Xt−u�Y t ∈ G1,

where � denotes a directed path.
Gu must also represent “direct” connections between variables in the same time step [37]. The bi-directed arrow Xt ↔ Y t

in Fig. 2c is an example: Xt−1 is an unobserved (in the data) common cause of Xt and Y t in G1 (Fig. 2a). Formally, the 
system timescale structure G1 induces bi-directed edges in the measurement timescale Gu as follows:

Xt ↔ Y t ∈ Gu ⇔ ∃Z , l < u : (Xt �Zt−l�Y t) ∈ G1, where X 	= Y .
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Just as G1 represents the rolled version of G1, Gu represents the rolled version of Gu : X → Y ∈ Gu iff Xt−u → Y t ∈ Gu and 
X ↔ Y ∈ Gu iff Xt ↔ Y t ∈ Gu .

The relationship between G1 and Gu —that is, the impact of subsampling—can be concisely represented using only the 
rolled graphs:

X → Y ∈ Gu ⇔ X
u� Y ∈ G1, (1)

X ↔ Y ∈ Gu ⇔ ∃Z , l < u : (X
l �Z l� Y ) ∈ G1, where X 	= Y . (2)

Here l� denotes a path of length l. Using the rolled graph notation, the logical encodings in Section 3 are considerably 
simpler.

Subsampling can also be interpreted as a transitive operation applied to graphs. For example, G6 is the graph that results 
from subsampling G2 by a further factor of 3. More generally, Gu·k can be obtained by subsampling Gk by (another) u steps 
according to:

X → Y ∈ Gu·k ⇔ X
u� Y ∈ Gk,

X ↔ Y ∈ Gu·k ⇔ ∃Z , l < u : (X
l �Z l� Y ) ∈ Gk ∨

∃Z , W , l < u : (X
l �Z ↔ W

l� Y ) ∈ Gk, where X 	= Y .

Notice that in the latter equation, the bidirected edges in Gk may induce additional bidirected edges in Gu·k . These equations 
yield Equations (1) and (2) when k = 1, since there are no bidirected edges in G1.

In order to obtain a correspondence between the underlying causal structure and the distribution that gives rise to the 
observed data at measurement timescale, we assume for a given subsampling rate u that specific conditional independences 
correspond to the absence of specific causal connections:

Xt−u ⊥⊥ Y t | Vt−u \ Xt−u ⇔ X → Y /∈ Gu (3)

Xt ⊥⊥ Y t | Vt−u ⇔ X ↔ Y /∈ Gu (4)

These assumptions are analogous to the combination of the Markov and faithfulness assumptions in the standard setting of 
causal discovery from cross-sectional data. However, here the assumptions are restricted to the particular (in)dependence 
relations we require to determine the causal structure, i.e., we allow, for example, for canceling pathways, which would 
otherwise constitute a violation of faithfulness, at subsampling rates that we do not consider.

Danks and Plis [6] demonstrated that, in the infinite sample limit, the causal structure G1 at the system timescale is 
in general underdetermined, even when the subsampling rate u is known and small. Consequently, even when ignoring 
estimation errors, the most we can learn is an equivalence class of causal structures at the system timescale. We define 
H to be the estimated version of Gu , a graph over V obtained or estimated at the measurement timescale (with possibly 
unknown u). Due to underdetermination, multiple 〈G1, u〉 pairs can imply H, and so search is particularly challenging when 
u is unknown. At the same time, if H is estimated from data, it is possible, due to statistical errors, that no Gu has the 
same structure as H. With these observations, we are ready to define the computational problems focused on in this work.

Task 1. Given a measurement timescale structure H (with possibly unknown u), infer the (equivalence class of) causal structures G1

consistent with H (i.e. Gu =H by Eqs. (1) and (2)) if such a G1 exists.

We also consider the corresponding problem when the subsampled time series is directly provided as input, rather than Gu .

Task 2. Given a dataset of measurements of V obtained at the measurement timescale (with possibly unknown u), infer the (equiva-
lence class of) causal structures G1 (at the system timescale) that are (optimally) consistent with the data.

Section 3 provides a solution to Task 1. Section 4 provides a solution to Task 2, including an explanation on how H can be 
estimated from sample data in Section 4.2. Later sections further consider generalizations of these two basic tasks.

3. Finding consistent system timescale structures

We first focus on Task 1. We discuss the computational complexity of the underlying decision problem, and present 
a practical Boolean constraint satisfaction approach that empirically scales up to significantly larger graphs than previous 
state-of-the-art algorithms.
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3.1. On computational complexity

Consider the task of finding even a single G1 consistent with a given H. A variant of the associated decision problem is 
related to the NP-complete problem of finding a matrix root.

Theorem 1. Deciding whether there is a G1 that is consistent with the directed edges of a given H is NP-complete for any fixed u ≥ 2.

Proof. Membership in NP follows from a guess and check: guess a candidate G1, and deterministically check whether the 
length-u paths of G1 correspond to the edges of H [31]. For NP-hardness, for any fixed u ≥ 2, there is a straightforward 
reduction from the NP-complete problem of determining whether a Boolean B matrix1 has a uth root [21]: for a given n ×n
Boolean matrix B , interpret B as the directed edge relation of H, i.e., H has the edge (i, j) iff Au(i, j) = 1. It is then easy to 
see that there is a G1 that is consistent with the obtained H iff B = Au for some binary matrix A (i.e., a uth root of B). �

If u is unknown, then membership in NP can be established in the same way by guessing both a candidate G1 and a 
value for u. Theorem 1 ignores the possible bi-directed edges in H (whose presence/absence is also harder to determine 
reliably from practical numbers of samples; see Section 5). Knowledge of the presences and absences of such edges in H
can restrict the set of candidate G1s. For example, in the special case where H is known to not contain any bi-directed 
edges, the possible G1s have a fairly simple structure: in any G1 that is consistent with H, every node has at most one 
successor.2 Whether this knowledge can be used to prove a more fine-grained complexity result for special cases is an open 
question.

3.2. A SAT-based approach

Recently, the first exact search algorithm for finding the G1s that are consistent with a given H for a known u was 
presented by Plis et al. [31]; it represents the current state of the art. Their approach implements a specialized depth-first 
search procedure for the problem, with domain-specific polynomial time search-space pruning techniques. As an alterna-
tive, we present here a Boolean satisfiability based approach. First, we represent the problem exactly using a rule-based 
constraint satisfaction formalism. Then, for a given input H, we employ an off-the-shelf Boolean constraint satisfaction 
solver for finding a G1 that is guaranteed to be consistent with H (if such G1 exists). Our approach is not only simpler than 
the approach of Plis et al. [31], but as we will show, it also significantly improves the current state-of-the-art in runtime 
efficiency and scalability.

We present our approach using answer set programming (ASP) as the constraint satisfaction formalism3 [28,33,10]. It 
offers an expressive declarative modeling language, in terms of first-order logical rules, for various types of NP-hard search 
and optimization problems. To solve a problem via ASP, one first needs to develop an ASP program (in terms of ASP 
rules/constraints) that models the problem at hand; that is, the declarative rules implicitly represent the set of solutions to 
the problem in a precise fashion. Then one or multiple (optimal, in case of optimization problems) solutions to the original 
problem can be obtained by invoking an off-the-shelf ASP solver, such as the state-of-the-art Clingo system [10] used in 
this work. The search algorithms implemented in the Clingo system are extensions of state-of-the-art Boolean satisfiability 
and optimization techniques which can today outperform even specialized domain-specific algorithms, as we show here.

We proceed by describing a simple ASP encoding of the problem of finding a G1 that is consistent with a given H. The 
input—the measurement timescale structure H—is represented as follows. The input predicate node/1 represents the nodes 
of H (and all graphs), indexed by 1 . . .n. The presence of a directed edge X → Y between nodes X and Y is represented 
using the predicate edgeh/2 as edgeh(X,Y). Similarly, the fact that an edge X → Y is not present is represented using the 
predicate no_edgeh/2 as no_edgeh(X,Y). The presence of a bidirected edge X ↔ Y between nodes X and Y is represented 
using the predicate confh/2 as confh(X,Y) (X < Y ), and the fact that an edge X ↔ Y is not present is represented using 
the predicate no_confh/2 as no_confh(X,Y).

If u is known, then it can be passed as input using u(U); alternatively, it can be defined as a single value in a given 
range (here set to 1, . . . , 5 as an example):

urange(1..5). % Define a range of u:s
1 { u(U): urange(U) } 1. % u(U) is true for only one U in the range

Here the cardinality constraint 1 { u(U): urange(U) } 1 states that the predicate u is true for exactly one value U
chosen from those for which urange(U) is true.

1 Multiplication of two values in {0, 1} is defined as the logical-or, or equivalently, the maximum operator.
2 To see this, assume X has two successors, Y and Z , s.t. Y 	= Z in G1. Then Gu will contain a bi-directed edge Y ↔ Z for all u ≥ 2, which contradicts 

the assumption that H has no bi-directed edges.
3 Note the comparison to other solvers using the propositional SAT formalism in Section 7.
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Solution G1s are represented via the predicate edge1/2, where edge1(X,Y) is true iff G1 contains the edge X → Y . 
In ASP, the set of candidate solutions (i.e., the set of all directed graphs over n nodes) over which the search for solutions 
is performed, is declared via the so-called choice construct within the following rule, stating that candidate solutions may 
contain directed edges between any pair of nodes. If we have prior knowledge about edges that must (or must not) be 
present in G1, then that content can straightforwardly be encoded here.

{ edge1(X,Y) } :- node(X), node(Y).

This is a so-called choice rule in the ASP syntax, which here states that edge1 can be true or false for any pair of nodes 
X, Y , as given by the predicate node.

The implied measurement timescale structure Gu for a candidate solution G1 is represented using the predicates
edgeu/2 and confu/2, which are derived in the following way. First, we declare the mapping from a given G1 to the 
corresponding Gu by declaring the exact length-L paths in a non-deterministically chosen candidate solution G1. For this, 
we declare rules that compute the length-L paths inductively for all L ≤ U , using the predicate path(X,Y,L) to represent 
that there is a length-L path from X to Y .

% Derive all directed paths up to length U
path(X,Y,1) :- edge1(X,Y).
path(X,Y,L) :- path(X,Z,L-1), edge(Z,Y), L <= U, u(U).

The first rule states that an edge X → Y implies the existence of the (corresponding) path of length one. The second rule 
declares inductively, that the existence of a path of length L − 1 from X to Z , and an edge Z → Y , together imply the 
existence of a path of length L from X to Y .

Second, to obtain Gu , we encode Equations (1) and (2) with the following rules that form predicates edgeu and confu
describing the edges G1 induces on the measurement timescale structure Gu . The first rule derives induced directed edges 
in Gu from the length-U paths, and the second the bidirected edges based on the existence of pairs of confounding paths 
of length up to U − 1.

% Paths of length U, correspond to measurement timescale edges
edgeu(X,Y) :- path(X,Y,L), u(L).

% Paths of equal length (<U) from a single node result in bi-directed edges
confu(X,Y) :- path(Z,X,L), path(Z,Y,L), node(X;Y;Z), X < Y, L < U, u(U).

Finally, we declare constraints that require that the Gu represented by the edgeu and confu predicates is consistent 
with the input H. This is achieved with the following integrity rules, which enforce that the edge relations of Gu and H are 
exactly the same for any solution G1. In other words, the first two rules derive a contradiction in case the directed edge 
relations of Gu and H do not match; the third and fourth rules do the same for the bidirected edge relations of Gu and H. 
For example, if the edgeh is true in the input for some X and Y and the corresponding edgeu is not derived, the set of 
edges defined by edge1 does not constitute a consistent graph for the input H according to the first rule below.

:- edgeh(X,Y), not edgeu(X,Y).
:- no_edgeh(X,Y), edgeu(X,Y).
:- confh(X,Y), not confu(X,Y).
:- no_confh(X,Y), confu(X,Y).

Our ASP encoding of Task 1 consists of the rules just described. The set of solutions of the encoding correspond exactly 
to the G1s consistent with the input H. Note that before solving, these first-order rules are grounded for all possible 
instantiations of X, Y , Z and L relevant to the input.

3.3. Runtime comparison

Both our proposed SAT-based approach and the recent specialized search algorithm MSL of Plis et al. [31] are correct and 
complete, so we focus on differences in efficiency, using the implementation of MSL by the original authors. Our approach 
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Fig. 3. Running times for 10-node rolled graphs as a function of graph density for the state of the art (MSL) and our method (SAT). We used 100 graphs 
per density and a timeout of 100 seconds; both methods enumerate up to 1000 solutions.

Fig. 4. Running times as function of the number of nodes for the state of the art (MSL) and our method (SAT). Left: 10%-dense graphs. Right: 15%-dense 
graphs. In both plots we use 100 graphs per size and a timeout of 1 hour; both methods enumerate up to 1000 solutions.

allows for searching simultaneously over a range of values of u, but Plis et al. [31] focused on the case u = 2; hence, we 
restrict the comparison to u = 2.

The MSL algorithm starts by noting that every measurement timescale edge corresponds to a path of length u in G1, 
where that path must be through another measured variable. MSL thus creates u − 1 “virtual” mediating nodes for each 
measurement timescale edge, and then finds all ways of identifying virtual nodes with actual nodes such that all-and-only 
the measurement timescale edges are implied. Exhaustive search of all possible virtual to actual identifications is computa-
tionally intractable, so MSL employs a branch-and-bound search procedure, where a branch is bounded whenever it implies 
a “false positive” (i.e., implies an edge that does not actually occur in the measurement timescale input). Because each 
edge requires u − 1 virtual nodes, each of which must later be identified with an actual node, MSL scales quite poorly as a 
function of u.

For the comparison, we simulated system timescale rolled graphs with varying density and number of nodes (see Sec-
tion 5 for exact details), and then computed the implied measurement timescale structures for subsampling rate u = 2. 
This structure was given as input to the inference procedures (including the subsampling rate u = 2). Note that the input 
consisted here of graphs for which there always is a G1, so all instances were satisfiable. The task of the algorithms was 
to output up to 1000 (system timescale) graphs in the equivalence class. The ASP encoding was solved by Clingo using 
the flag -n 1000 for the solver to enumerate 1000 solution graphs (or all, in cases where there were fewer than 1000 
solutions).

The running times of the MSL algorithm and our approach (SAT) on 10-node (rolled) input graphs with different edge 
densities are shown in Fig. 3. Fig. 4 shows the scalability of the two approaches in terms of increasing number of nodes in 
the rolled input graphs and fixed 10% or 15% edge density. Our declarative approach clearly outperforms MSL. 10-node rolled 
input graphs, regardless of edge density, are essentially trivial for our approach, while the performance of MSL deteriorates 
noticeably as the density increases. For varying numbers of nodes in 10% density input graphs, our approach scales up to 
65 nodes with a one hour time limit; even for 70 nodes, 25 graphs finished in one hour. In contrast, MSL reaches only 
35 nodes; our approach uses only a few seconds for those graphs. The scalability of our algorithm allows for investigating 
the influence of edge density for larger graphs. Fig. 5 (left) plots the running times of our approach (when enumerating all
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Fig. 5. Left: Influence of input graph density on running times of our approach when the subsampling rate u = 2 is given as input and all solutions are 
enumerated. Right: Scalability of our approach when u is left to be determined by the method from interval 1, . . . , 5. All solutions over the range of us are 
enumerated.

solutions) for u = 2 (u = 2 was given as input) on 20-node input graphs of varying densities. Note that here the instances 
are sorted by the running time for each individual density (curve). With a time limit of 1000 seconds we can solve 80% 
of the instances with 26% density, almost all of the instances with 25% density and all of the instances with 24% density. 
Thus, the running time is increased for denser graphs: in addition to more constraints, there are also more members in the 
equivalence classes. Finally, Fig. 5 (right) shows the scalability of our approach in the more challenging task of enumerating 
all solutions over the range u = 1, . . . , 5 simultaneously. This also demonstrates the generality of our approach: it is not 
restricted to solving for individual values of u separately.

4. Learning system timescale structures from data

Due to statistical errors in estimating H and the sparse distribution of implied Gu in the space of possible undersampled 
graphs, the estimated H will often have no G1s with Gu =H. Given such an H, neither the MSL algorithm nor our approach 
in the previous section can output a solution, and they simply conclude that no solution G1 exists for the input H.4 In terms 
of our constraint declarations, this is witnessed by conflicts among the constraints and the underlying model space for any 
possible solution candidate. Given the inevitability of statistical errors, we should not simply conclude that no consistent G1

exists for such an H. Rather, we should aim to learn G1s that, in light of the underlying conflicts, are “optimally close” (in 
some well-defined sense of “optimal”) to being consistent with H. We now turn to this more general problem setting, and 
propose what (to the best of our knowledge) is the first approach to learning, by employing constraint optimization, from 
undersampled data under conflicts. In fact, we can use the ASP formulation already discussed—with minor modifications—to 
address this problem.

In this more general setting, the input consists of both the estimated graph H, and also (i) weights w(e ∈ H) indicating 
the reliability of edges present in H; and (ii) weights w(e /∈ H) indicating the reliability of edges absent in H. Since Gu is 
G1 subsampled by u, the task is to find a G1 that minimizes the objective function

f (G1, u) =
∑

e∈H
I[e /∈ Gu] · w(e ∈ H) +

∑

e /∈H
I[e ∈ Gu] · w(e /∈ H),

where the indicator function I(c) = 1 if the condition c holds, and I(c) = 0 otherwise. Thus, edges that differ between the 
estimated input H and the Gu corresponding to the solution G1 are penalized by the weights representing the reliability 
of the measurement timescale estimates. In the following, we first outline how to generalize the ASP encoding from the 
preceding section to enable search for optimal G1 with respect to this objective function. We then describe two alternatives 
for determining the weights w . In the following section, we present simulation results on the relative performance of the 
different weighting schemes.

4.1. Learning by constraint optimization

To model the objective function for handling conflicts, only simple modifications are needed to our ASP encoding: instead 
of declaring hard constraints that require that the paths induced by G1 exactly correspond to the edges in H, we soften

4 For these cases, Plis et al. [31] ran MSL on graphs close to H to try to find an input for which there is a G1, but this strategy is not guaranteed to find 
an optimal solution, nor does it scale computationally.
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these constraints by declaring that the violation of each individual constraint incurs the associated weight as penalty. In the 
ASP language, this can be expressed by augmenting the input predicates edgeh(X,Y) with weights: edgeh(X,Y,W) (and 
similarly for no_edgeh, confh and no_confh), and by using weighted soft rules syntactically represented via :~ instead of
:-. Here the additional argument W represents the weight w((X → Y ) ∈ H) given as input. The following expresses that 
each conflicting presence of an edge in H and Gu is penalized with the associated weight W . The additional [W,X,Y,v]
for v = 1, 2 syntactically enforce that a cost of W is incurred in case the corresponding rule is violated for a specific pair 
of nodes X, Y . The numbers v ∈ {1, 2} at the end of the brackets enable the solver to distinguish the cost incurred due to 
bidirected and directed edges respectively.

:~ edgeh(X,Y,W), not edgeu(X,Y). [W,X,Y,1]
:~ no_edgeh(X,Y,W), edgeu(X,Y). [W,X,Y,1]
:~ confh(X,Y,W), not confu(X,Y). [W,X,Y,2]
:~ no_confh(X,Y,W), confu(X,Y). [W,X,Y,2]

This modification provides an ASP encoding for Task 2; that is, the optimal solutions to this ASP encoding correspond exactly 
to the G1s that minimize the objective function f (G1, u) for given u and input H with weighted edges.

4.2. Weighting schemes

We use two different schemes for weighting the presences and absences of edges in H according to their reliability. To 
determine the presence or absence of a specific edge X → Y in H, we simply test the corresponding independence Xt−1 ⊥⊥
Y t | Vt−1 \ Xt−1. To determine the presence/absence of an edge X ↔ Y in H, we test the independence: Xt ⊥⊥ Y t | Vt−1.

The simplest approach is to use uniform weights for the estimated H:

w(e ∈ H) = 1 ∀e ∈ H,

w(e /∈ H) = 1 ∀e /∈ H.

Uniform edge weights resemble the search on the Hamming cube of H that Plis et al. [31] used to address the problem of 
finding G1s when H did not correspond to any Gu , though our approach is much superior computationally.

A more intricate approach is to use pseudo-Bayesian weights following [24,16,34]. They used Bayesian model selection 
to obtain reliability weights for independence tests. Instead of a p-value and a binary decision, these types of tests give a 
measurement of reliability for an independence/dependence statement as a Bayesian probability. We can directly incorporate 
their approach of using log-probabilities as the reliability weights for the edges. For details, see Section 4.3 of Hyttinen et al. 
[16]. Again, we only compute weights for the independence tests mentioned above in the estimation of H.

5. Simulations

We use simulations to explore the accuracy and runtime efficiency of our approach in various different settings. For the 
simulations, system timescale structures G1 and the associated data generating models were constructed in the following 
way. To guarantee connectedness of the graphs, we first formed a cycle of all nodes in a random order (following Plis et al. 
[31]). We then randomly sampled additional directed edges until the required density was obtained. Recall that there are 
no bidirected edges in G1. We used Equations (1) and (2) to generate the measurement timescale structure Gu for a given 
u. When sample data were required, we used linear Gaussian structural autoregressive processes (order 1) with structure 
G1 to generate data at the system timescale, where coefficients were sampled from the two intervals ±[0.2, 0.8]. We then 
discarded intermediate samples5 to get the particular subsampling rate.6

5.1. Accuracy

Fig. 6 shows the accuracy of the different methods in one setting: subsampling rate u = 2 (given as input), network size 
n = 6, average degree 3 (density 25%), N = 250 samples, and 200 datasets in total. The positive predictions correspond to 
presences of edges; when the method returned several solutions with equal cost, we used the mean solution accuracy to 
measure the output accuracy. The x-axis numbers correspond to the adjustment parameter for the statistical independence 
tests (prior probability of independence). The two left columns (black and red) show the true positive rate and false positive 
rate of the H estimation (compared to the true G2), for the different types of edges, using different statistical tests. Given 
250 samples, we see that the structure of G2 can be estimated with a good tradeoff of TPR and FPR with the middle 

5 All sample counts refer to the number of samples after subsampling.
6 Clingo only accepts integer weights; we multiplied weights by 1000 and rounded to the nearest integer.
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Fig. 6. Accuracy of the optimal solutions when subsampling rate u = 2 is given as input (200 instances and 250 samples). The x-axis shows the different 
prior probabilities of independence in the utilized independence test. The two left columns give the accuracy of the estimation of the measurement 
timescale structure H. The next two columns give the accuracy of our method with the two different weighting schemes. The rightmost column shows the 
accuracy of the baseline estimate that does not take subsampling into account (the directed edges of H are directly interpreted as the system timescale 
edges). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 7. Accuracy of the optimal solutions when subsampling rate u = 2 is given as input (200 instances and 500 samples). The x-axis shows the different 
prior probabilities of independence in the utilized independence test. The two left columns give the accuracy of the estimation of the measurement 
timescale structure H. The third column gives the accuracy of our method with the pseudo-Bayesian weighting scheme. The rightmost column shows the 
accuracy of the baseline estimate that does not take subsampling into account. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)
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Fig. 8. Accuracy of the optimal solutions when subsampling rate u = 2 is given as input (200 instances and 250 samples), some samples are obtained at the 
adjacent timepoints. Due to previous simulations we used the prior probability of 0.3 for all methods. In more detail, the x-axis gives the probability that 
the sample was obtained at the correct time t , otherwise the sample was obtained either at the previous or the next time point, splitting the remaining 
probability. The two left columns give the accuracy of the estimation of the measurement timescale structure H. The third column gives the accuracy of our 
method with the pseudo-Bayesian weighting scheme. The rightmost column shows the accuracy of the baseline estimate that does not take subsampling
into account.

parameter values, but not perfectly. The presence of directed edges can be estimated more accurately. More importantly, 
the third and fourth columns in Fig. 6 (green and blue) show the accuracy of the G1 estimation. Both weighting schemes 
produce good accuracy for the middle parameter values, although there are some outliers. The pseudo-Bayesian weighting 
scheme (“psbayesw”, shown in green) still outperforms the uniform weighting scheme (“uniformw”, shown in blue), as it 
produces high TPR with low FPR for a range of threshold parameter values (especially for 0.3). Both weighting schemes are 
superior to the “baseline” shown in magenta on the right. This baseline G1 estimate is formed by the directed edges of the 
estimated H , and thus corresponds to estimating G1 without taking subsampling into account.

Fig. 7 shows the accuracy when u = 3 (given as input), n = 6, average degree 3 (density 25%), N = 500, and 200 datasets. 
The accuracy for edge presences in the measurement timescale graph H is lower than for u = 2, even though we have twice 
the number of samples (Fig. 7, two rightmost columns in black and red). The problem is that measurement timescale edges 
here correspond to 3-edge paths, whose causal effects will be smaller (on average) than 2-edge paths for a fixed interval 
of system timescale edge coefficients (±[0.2, 0.8]), and so are harder to detect. Nevertheless, the constraint optimization 
procedure achieves a good tradeoff between TPR and FPR for system timescale edges (Fig. 7, third column in green). Larger 
subsampling rates (u) require more samples for accurate G1 structure discovery, but not several orders of magnitude more 
data.

5.2. Robustness of the subsampling rate

Fig. 8 shows the accuracy of this method when some of the samples are not obtained at the exact time assumed by the 
measurement timescale. Specifically, the x-axis specifies the probability with which we obtain the correct sample (for the 
given u = 2, which is given as input); otherwise, we take either the sample before or the sample after (synchronously for all 
variables), splitting the remaining probability. The results with probability 1 equal the result in Fig. 6 with prior probability 
of independence 0.3 and N = 250 samples. These values were used in all runs in this plot. Unsurprisingly, as the “jitter” 
in the sampling process increases, the results deteriorate in terms of TPR and FPR. However, at least for the models and 
subsampling rate of u = 2 tested here, the inference is not overly sensitive. When the probability of a correct sample is 
0.9, the results are still quite good, alleviating somewhat the dependence on the assumption of an exact subsampling rate. 
Naturally, there are many further permutations one could explore: jitter could affect variables independently of one another, 
jitter could be represented by a more complex distribution, we could explore the effect of jitter for different subsampling 
rates or when the subsampling rate is unknown. Moreover, jitter could have a persistent, rather than a local effect, in 
shifting subsequent measures as well. We have here only explored the simple case mimicking the situation where the 
measurement device as a whole (i.e. simultaneously for all variables) comes out of synch with the system at random points 
without consequences for subsequent samples.



A. Hyttinen et al. / International Journal of Approximate Reasoning 90 (2017) 208–225 219
Fig. 9. Accuracy when the true u is unknown. Two left boxplots show accuracy of the H estimate as before. The next three boxplots show the accuracy 
of our approach (pseudo-Bayesian weights) when, regardless of the true u, u is fixed to 2, or to 3, or left for the procedure decision, respectively. In the 
second from right boxplot the true u was given as input, the rightmost boxplot shows the baseline that does not take subsampling into account.

Fig. 9 further examines the possibility to distinguish between different subsampling rates. We generated 500 samples of 
data from 200 models (average degree 3) with equal numbers of cases with u = 2 or u = 3. The two leftmost boxplots show 
the accuracy of the estimated H, which, given the mixture of u = 2 and u = 3, is between the accuracy of H obtained in 
previous simulations. The next two boxplots show the accuracy of the G1 estimate, when the subsampling rate u for the 
search procedure is fixed to 2 or 3, respectively, regardless of the true u. As expected, the accuracy is mediocre in this case, 
since the method assumes the incorrect subsampling rate u in half of the runs. But when the method is left to determine 
the correct u by itself, the accuracy improves again, as shown in the boxplots third form right (the method was run with 
u = 2...3). In fact, the accuracy comes close to that of the second from right boxplot, where the correct u was given as input 
to the procedure. Thus the procedure is often able to recognize the correct u. The longer tails indicate that at times the 
determination of u is not perfect.

5.3. Scalability

Finally, the running times of our approach are shown in Fig. 10 with different weighting schemes, network sizes (n), 
and numbers of samples (N). The subsampling rate was again fixed to u = 2 (and given as input), and average node degree 
was 3. Fig. 10 (left) shows that the pseudo-Bayesian weighting scheme allows for much faster solving: for n = 7, it finishes 
all runs in a few seconds (black circle), while the uniform weighting scheme (red diamond) takes several minutes in the 
longest runs. Thus, the pseudo-Bayesian weighting scheme provides the best performance in terms of both computational 
efficiency and accuracy. The number of samples has a significant effect on the running times: larger number of samples 
take less time. Runs for n = 9, N = 200 (blue square) take longer than for n = 9, N = 500 (Fig. 10 left, magenta circle 
vs. cyan diamond). Intuitively, statistical tests should be more accurate with larger number of samples, resulting in fewer 
conflicting constraints. For N = 1000, the global optimum is found here for up to 12-node graphs (Fig. 10 right), though in 
a considerable amount of time.

6. Case study: house data of Peters et al. [29]

In order to demonstrate the applicability to real-world data, we analyzed the house temperature and humidity data of 
Peters et al. [29]. The data includes 7265 samples of hourly temperature and humidity measurements of six sensors placed 
in a house (SHED = in the shed, OUT = outside, KIT = kitchen boiler, LIV = living room, WC = wc, BATH = bathroom) in 
the Black Forest. The house has heating, but the house is not in use for most of the year. This data was also partly analyzed 
by Gong et al. [11]. The measurements of this system were obtained at coarser intervals than the process of temperature 
and humidity changes are thought to take place. Since the data includes outside temperature and humidity measurements, 
the assumption of causal sufficiency at the system timescale seems a good approximation.
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Fig. 10. Scalability of our constraint optimization approach (using Clingo) for different graph sizes, numbers of samples and weighting schemes. For each 
setting there are 100 instances that are sorted according to the solving time on each line. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

We analyzed the temperature and humidity components separately, and examined the differences of sequential measure-
ments,7 as this removed trends from each univariate time series. The temperature measurement timescale graph (obtained 
at 0.9 prior probability of independence) includes a total of 20 (out of 36) directed edges, and 8 (out of 15) bidirected edges, 
with varying pseudo-Bayesian weights. The humidity measurement timescale graph had the same total numbers of edges, 
although not the exact same edges.

As explained earlier, subsampling introduces underdetermination of the system timescale graph. Thus, we determined 
the presence of individual system timescale edges in the following way [23]. For each edge in G1, we ran the inference 
procedure first enforcing its presence and then enforcing its absence.8 The difference in objective function values for the 
two outputs—the optimal G1s that do or do not contain the edge, respectively—indicates the support for the presence 
(absence) of the edge.

For the estimated H, we computed G1s edgewise for subsampling rates of u = 2, 3. (Since the measurements were 
hourly, these correspond to time steps of 30 and 20 minutes, respectively.) The two temperature graphs for u = 2 and 
u = 3 (Fig. 11a, b) differ substantially from one another, as do the two humidity graphs (Fig. 11d, e). These results provide 
empirical demonstrations of the impact of subsampling, as different choices of u imply different structures. At the same 
time, timesteps of 20 and 30 minutes arguably do not correspond to realistic time steps for the temperature and humidity 
changes measured by these data.

We thus considered larger subsampling rates u = 10..12, which correspond to more realistic time steps of 5–6 min-
utes. As expected, there is more underdetermination for these u, but the results are also more plausible. Fig. 11c suggests 
that the temperature outside is not directly influenced by the temperature in any of the rooms, but it directly influences 
the temperature in the shed. The data do not, however, uniquely determine how the outside temperature directly affects 
the temperatures in the rooms inside the house, nor the system timescale causal dependencies between temperatures in 
the rooms. The algorithm output is both intuitively sensible, and also points towards future targeted experiments if the 
remaining underdetermination is to be resolved.

Similarly, the humidity structures for larger u are more plausible. Fig. 11f suggests that the humidity level in the WC is 
driven by both bathroom and outside humidity, which is sensible since the WC is located next to the bathroom and has 
a window, according to Peters et al. [29]. Similarly as Peters et al. [29], we find that the shed humidity affects bathroom 
humidity—for both analyses this may be due to an inability to distinguish the shed humidity from the outside humidity 
(they are particularly strongly correlated). The living room and kitchen boiler humidities seem to depend on each other 
directly, so the data suggest that the rooms may be adjacent, though that information was not provided by Peters et al. 
[29]. The algorithm thus points to testable predictions about the spatial house layout, and the mechanisms for humidity 
transfer.

Overall, the processes controlling the temperature and humidity have differences and similarities. Determining the place-
ment of sensors thus seems to require data from both measurement types. More importantly for our present paper, this 
case study shows that this algorithm can be applied to real-world data, provide intuitively sensible outputs, and provide 
novel experiments and measurements that would resolve remaining underdetermination.

7 This may take out some of the influences of self-loops.
8 This can be done by adding a simple clause to the input code “edge(X,Y).” to enforce the presence and “:-edge(X,Y).” to enforce the absence 

of X → Y .
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Fig. 11. Results of the House data analysis for different subsampling rates (u) and measurement type. Edges with full lines are found to be present, absent 
edges are found to be absent, edges with dotted lines may be present or absent.

7. Solver performance comparison

Thus far in this article we have considered Clingo as the only solver to find solutions to a declarative constraint 
encoding of the computational problems considered here. This raises the question to what extent the choice of the constraint 
solver affects the runtime performance of our approach. While the high-level ASP syntax is relatively easy to understand 
and modify, our approach can also be represented via propositional logic. The benefit of using propositional logic is that 
various SAT solvers, as well as MaxSAT solvers (as the Boolean optimization generalization of SAT), can be applied directly. 
In this section we evaluate the impact of the choice of SAT and MaxSAT solvers on the runtime efficiency of our approach.

7.1. Direct propositional SAT encoding

A direct propositional SAT encoding for finding a system timescale causal structure G1 consistent with a measurement 
timescale graph H for a known u is presented in Eqs. (5)–(12).

�

h X,Y ∀X, Y ∈ V : X → Y ∈ H (5)

¬�

h X,Y ∀X, Y ∈ V : X → Y /∈ H (6)
↔
h X,Y ∀X, Y ∈ V : X < Y , X ↔ Y ∈ H (7)

¬↔
h X,Y ∀X, Y ∈ V : X < Y , X ↔ Y /∈ H (8)

�

h X,Y ⇔
∨

Z∈V

(pu−1
X,Z ∧ p1

Z ,Y ) ∀X, Y ∈ V (9)

pl+1
X,Y ⇔

∨

Z∈V

(pl
X,Z ∧ p1

Z ,Y ) ∀X, Y ∈ V, l ∈ {1..u − 2} (10)

↔
h X,Y ⇔

u−1∨

l=1

↔
hl

X,Y ∀X, Y ∈ V : X < Y (11)

↔
hl

X,Y ⇔
∨

Z∈V

(pl
Z ,X ∧ pl

Z ,Y ) ∀X, Y ∈ V : X < Y , l ∈ {1..u − 1} (12)

Essentially, Eqs. (5)–(8) enforce the input constraints imposed by H. Following the ASP encoding presented earlier, 
Eqs. (9)–(12) encode the mapping from the G1’s—the edge relation of which is encoded as the length-1-path variables 
p1 —that are consistent with H.
X,Y
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Fig. 12. Comparison of running times for different solvers finding a single graph in the equivalence class, when the subsampling rate u = 3 is given as 
input. Left: easier instances with 27 nodes. Right: harder instances with 30 nodes. Clingo uses the ASP encoding presented in Section 3.2, all others use 
the propositional SAT encoding in Section 7.1.

7.2. Solver comparison: finding consistent system timescale structures

The results of a runtime performance comparison between Clingo and two state-of-the-art SAT solvers, Glucose [2]
and Lingeling [3], is presented in Fig. 12 for u = 3 (given as input), edge density of 10% and the numbers of nodes ranging 
from 27 (on left) to 30 (on right). Note that the plots give the running times of each of the three solvers sorted individually 
for each solver. In terms of runtime performance, the SAT solvers Glucose and Lingeling, both working directly on the 
propositional SAT encoding, exhibit noticeably improved performance over Clingo as the number of nodes is increased 
(right plot). Thus, in terms of runtime efficiency of our approach, it can be beneficial to apply current and future advances 
in state-of-the-art SAT solvers directly on the propositional level for improved performance. In these simulations the ASP 
paradigm does not show any particular computational advantage.

7.3. Solver comparison: learning system timescale structures from data

As with the ASP encoding given earlier, the SAT encoding given as Eqs. (5)–(12) is easily extended to solve the opti-
mization problem underlying the task of learning system timescale structure from undersampled data. In the language of 
MaxSAT, the only change required is to make the constraints in Eqs. (5)–(8) soft, and to declare that the cost incurred from 
not satisfying these individual constraints equals that of w(e ∈ H) (for Eqs. (5), (7)) or w(e /∈ H) (for Eqs. (6), (8)) for the 
corresponding edge e. This enables a comparison of the runtime performance of Clingo’s default branch-and-bound based 
search for an optimal solution to those of other MaxSAT solvers implementing alternative algorithmic approaches on the di-
rect propositional MaxSAT encoding. Results comparing the performance of Clingo to that of the modern MaxSAT solvers 
Eva500a [27], LMHS [32], MSCG [26], Open-WBO [25], PrimalDual [5], and QMaxSAT [20], as well as the commercial integer 
programming (IP) solver CPLEX run on a standard IP translation of MaxSAT [8,1], are shown in Fig. 13. Here we observe that
Clingo’s branch-and-bound approach is among the best performing solvers (with the considered problem parameters). 
However, the results also suggest that QMaxSAT, and so-called model-based approaches using a SAT solver to search for 
an optimal solution over the objective function range with a top-down strategy, can improve on the runtime efficiency of 
our approach. These results clearly show that the choice of the underlying Boolean optimization solver can indeed have a 
noticeable influence on the practical efficiency of the approach. There is at least some potential for further improving the 
runtime performance of our approach by making use of advances in MaxSAT solver technology.

8. Learning from mixed frequency data

In some contexts we may have obtained data from the same system at different subsampling frequencies. Two cases 
can be distinguished here: First, the subsampled time series may be anchored to the same underlying process such that 
one may know about the offset between the two.9 For approaches to this case see Tank et al. [36], who treat this issue 
as a missing data problem in a parametric setting. The second case we consider here is one where the subsampled time 
series are taken at different times and cannot be coordinated to the same instance of an underlying time series. A natural 
question is how much more can be learned by integrating information from multiple sampling rates. If one sampling rate is 
an integer multiple of the other, then (provably) nothing additional can be learned. A more interesting situation arises when 

9 For example, in the special case with two simultaneously measured data sets with u = 2 and 1 time step offset, we can combine the time series to 
give a dataset with no subsampling.
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Fig. 13. Comparison of running times for different solvers finding the optimal graph, when the subsampling rate u = 3 is given as input. Left: easier instances 
with 6 nodes. Right: harder instances with 7 nodes. Clingo uses the ASP encoding presented in Sections 3.2 and 4.1, all others use the propositional SAT 
encoding in Section 7.1.

Fig. 14. Example graphs for learning form mixed frequency data. Graph (a) shows the true system timescale causal structure. When this is subsampled by 
u = 2 or by u = 3, the result is also the structure (a) (this time in measurement timescale). System timescale structure (b) gives measurement timescale 
structure (a) when subsampling by u = 2. System timescale structure (c) gives measurement timescale structure (a) when subsampling by u = 3. However, 
if measurement timescale structures for u = 2 and u = 3 are given as (a) respectively, the true system timescale structure can in fact be identified as (a).

neither sampling rate is an integer multiple of the other. For example, suppose the causal system operates at a 1-second 
timescale. If the system is measured every 2 seconds in one dataset, and every 3 seconds in another dataset, then we have 
u1 = 2/3 · u2. More generally, if u1/u2 is non-integer, then when (if ever) is the equivalence class of G1 that satisfies both 
H1 & H2 smaller than the equivalence class for either H individually? We can start to answer this question using the 
constraint satisfaction approach of this paper with only minor modifications.

For example, suppose the true system timescale structure is given in Fig. 14a. That is, the system includes four inde-
pendent time series with self-loops. Undersampling does not change this graph, so the measurement timescale structures 
for u = 2 and for u = 3 will also be the graph in Fig. 14a. For this measurement timescale graph, the system timescale 
structure is not uniquely determined for either u = 2 or u = 3: for example, the system timescale structure in Fig. 14b pro-
duces Fig. 14a with u = 2, and Fig. 14c produces Fig. 14a with u = 3. In fact, any system timescale edge can be present or 
absent given either of the measurement timescale graphs alone.10 However, if this measurement timescale graph is found 
at both u = 2 and u = 3, then the system timescale structure can be uniquely determined: Fig. 14b produces a different 
measurement timescale graph for u = 3 and Fig. 14c produces a different measurement timescale graph for u = 2. And of 
course, the same observations hold if the us are multiplied by a constant (e.g., if u = 4 and u = 6).

To examine the prevalence of this phenomenon, we exhaustively considered all 65536(= 24·4) different 4-variable G1s, 
and compared the number of equivalence classes given input at a single subsampling rate, versus given inputs at two 
subsampling rates. A greater number of equivalence classes means a higher chance that a random graph will be uniquely 
identifiable, and so the number of equivalence classes is an approximate (inverse) measure of the extent of underdetermi-
nation.

For input at a single undersampling rate, for u = 2 we have 24265 equivalence classes; 7544 for u = 3; and 3964
equivalence classes for u = 4. These results with a single undersampled input graph thus replicate the known result that 
underdetermination is a significant problem, and it rapidly worsens as u increases [30,31].

If we instead have measurement timescale graphs for both u = 2, 3, then we have 26720 equivalence classes, which is 
only slightly more than the number for u = 2 by itself. That is, underdetermination is not substantially reduced if we addi-
tionally measure at u = 3 when we already have measurements at u = 2. Similarly, for u = 3, 4 we have 7814 equivalence 
classes; again, there is a reduction in underdetermination compared to u = 3 by itself, but it is quite small. This analysis 
assumes that all G1 are equally likely, and it is an open question whether measurements at different undersampling rates 
would have more impact for certain classes of G1 (e.g., connected graphs).

10 The node labels in Fig. 14b and c can be permuted.
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9. Discussion

We have assumed that all common causes of measured variables are themselves measured, but this assumption is fre-
quently violated in real-world data. Constraint satisfaction methods have elsewhere been used with success to identify 
causal relations in the presence of unobserved common causes or latent variables [16,23]. For time series data, dropping 
the assumption of causal sufficiency (in the system timescale) generates complications. Even if the system timescale process 
including latent variables is assumed to be first order Markov, the Markov order of the measurement timescale (naturally 
without the latent variables) can be arbitrarily larger.11 That is, variables arbitrarily far in the past can (directly, in the 
measurement timescale) cause variables at the current timestep. We would thus need to both enrich the notation for Gu to 
encode the time lags of direct causal effects, and also modify the statistical tests used to estimate these connections.

Moreover, there can be more information contained in the pattern of time lags (i.e., which past variables directly cause 
the present) than is given by the Markov order of the system. As just one example, suppose {Xt−2, Xt−4, . . .} → Y t . The sim-
plest (in terms of number of latents) structure that explains these influences (i) has a latent L through which X influences 
Y (i.e., Xt−2 → Lt−1 → Y t ); and (ii) L is part of a 2-loop with another latent M (i.e., Lt−1 → Mt and Lt ← Mt−1). In contrast, 
if we have {Xt−2, Xt−3, . . .} → Y t , then the simplest structure has only a single latent L through which X influences Y , but 
where L has a self-loop (i.e., Lt−1 → Lt ). The pattern of time lags for direct causes—in particular, the absence of certain time 
lags—thus contains information about the number and causal structure of the latent variables. Estimation of this pattern, 
however, can be quite complex statistically.

Subsampled time series data can be also particularly prone to violations of faithfulness. For example, the underlying 
process unrolled over time may include directed paths over many time steps that do not result in significant statistical de-
pendence in the observed data. In addition, variables observed over subsequent time steps might be almost deterministically 
related. If Xt−1 ≈ Xt−2, then conditioning on Xt−2 may render the statistical dependence through Y t ← Xt−1 → Zt unde-
tectable from any realistic numbers of samples. In the current framework, both of these situations are treated as estimation 
errors in H. Further modeling of these complications may help to achieve improved accuracy. Another option could be to 
develop parametric approaches instead of the non-parametric one presented in this paper.

10. Conclusion

In this paper, we introduced a constraint optimization based solution for the problem of learning causal timescale struc-
tures from subsampled measurement timescale graphs and data. Our approach considerably improves the state-of-art; in 
the simplest case (subsampling rate u = 2), we extended the scalability by several orders of magnitude. Moreover, our 
method generalizes to handle different or unknown subsampling rates in a computationally efficient manner. Unlike pre-
vious methods, our method can operate directly on finite sample input, and we presented approaches that recover, in an 
optimal way, from conflicts arising from statistical errors. We demonstrated the accuracy, robustness and scalability of the 
approach through a series of simulations and applied it to real-world time series data. We expect that this considerably 
simpler approach will allow for the relaxation of additional model space assumptions in the future. In particular, we plan to 
use this framework to learn the system timescale causal structure from subsampled data when latent time series confound 
our observations.
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