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ABSTRACT
Aims: To assess performance of classifiers trained on
Heidelberg Retina Tomograph 3 (HRT3) parameters for
discriminating between healthy and glaucomatous eyes.
Methods: Classifiers were trained using HRT3 para-
meters from 60 healthy subjects and 140 glaucomatous
subjects. The classifiers were trained on all 95 variables
and smaller sets created with backward elimination.
Seven types of classifiers, including Support Vector
Machines with radial basis (SVM-radial), and Recursive
Partitioning and Regression Trees (RPART), were trained
on the parameters. The area under the ROC curve (AUC)
was calculated for classifiers, individual parameters and
HRT3 glaucoma probability scores (GPS). Classifier AUCs
and leave-one-out accuracy were compared with the
highest individual parameter and GPS AUCs and
accuracies.
Results: The highest AUC and accuracy for an individual
parameter were 0.848 and 0.79, for vertical cup/disc ratio
(vC/D). For GPS, global GPS performed best with AUC
0.829 and accuracy 0.78. SVM-radial with all parameters
showed significant improvement over global GPS and vC/
D with AUC 0.916 and accuracy 0.85. RPART with all
parameters provided significant improvement over global
GPS with AUC 0.899 and significant improvement over
global GPS and vC/D with accuracy 0.875.
Conclusions: Machine learning classifiers of HRT3 data
provide significant enhancement over current methods for
detection of glaucoma.

Glaucoma is an optic neuropathy characterised by
visual field loss with gradual thinning of the retinal
nerve fibre layer (RNFL) and cupping of the optic
nerve head (ONH).1 The diagnosis of glaucoma
currently requires assessment of both the func-
tional visual abilities and structural measurements
through visual field (VF) testing and imaging
methods such as confocal scanning laser ophthal-
moscopy (CSLO).2 However, the detection of VF
defects typically occurs after there has been
substantial structural damage.3 Subjective assess-
ment through clinical examination has inherent
limitations due to inter-observer variability,4 5 so
an objective method of examining the ONH with
an imaging device such as CSLO may have
significant diagnostic value.

The Heidelberg Retina Tomograph (HRT;
Heidelberg Engineering, Heidelberg, Germany) is
a CSLO instrument that acquires three-dimen-
sional maps of the ONH and peripapillary retina.
Numerous quantitative parameters are calculated
both globally and in segmented areas of the ONH.
These parameters can then be used as input for
machine learning classifiers. Machine learning

classifiers are systems for determining the relation-
ship between their input parameters and desired
output classification, based on a training set whose
classification is known a priori. The optimised use
of all available HRT structural information might
improve the discrimination ability more than an
individual parameter.6–8 The purpose of this study
was to assess the performance of classifiers trained
on HRT3 ONH parameters for discriminating
between healthy and glaucomatous eyes.

MATERIALS AND METHODS

Subjects
Healthy subjects and glaucoma patients from
glaucoma clinics meeting eligibility criteria were
enrolled in this cross-sectional study. All subjects
received a comprehensive ophthalmic evaluation,
with all tests completed within 6 months. The
evaluation included medical history, best-corrected
visual acuity, manifest refraction, intraocular
pressure (IOP) measurements by Goldmann appla-
nation, gonioscopy, slit-lamp examination before
and after pupil dilation, VF testing and HRT2
scanning of the disc. If necessary to obtain HRT
scans, subjects underwent pupillary dilation with
tropicamide and phenylephrine. Diagnosis was
determined clinically by glaucoma experts using
the criteria below.

All subjects had best-corrected visual acuity of
20/40 or better and refractive error 26.00 to +6.00
dioptres (spherical equivalent). Subjects were
excluded if they exhibited signs of ocular pathol-
ogies other than glaucoma, if media opacity or
poorly dilating pupils interfered with clinical
viewing or fundus imaging, or if they chronically
used medications known to affect retinal thick-
ness. Patients were also excluded if they had
systemic diseases that may affect retinal thickness
or visual field, or if they had previous ocular
operations other than uneventful cataract extrac-
tion.

Glaucomatous eyes
Eyes were defined as glaucomatous if they dis-
played glaucomatous optic neuropathy and glau-
comatous VF loss. Glaucomatous optic neuropathy
was defined as inter-eye cup–disc ratio asymmetry
.0.2, accounting for disc size; general rim thinning
or focal notching; peripapillary haemorrhages; or
cup–disc ratio >0.6. Glaucomatous VF loss is
diagnosed if the glaucoma hemifield test was
outside normal limits, pattern standard deviation
(PSD) was ,5%, or a cluster of three or more
non-edge points were depressed on the pattern
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deviation plot at a level of p,0.05, with one point depressed at a
level of p,0.01, in two consecutive VF tests.

Healthy eyes
Eyes were defined as healthy if there was no history or evidence
of glaucoma, IOP was less than 21 mm Hg, the ONH did not
display signs of optic neuropathy, and the Humphrey 24-2
pattern VF appeared without reproducible points outside
normal limits.

VF testing
All subjects had Humphrey Swedish interactive thresholding
algorithm (SITA) standard 24-2 perimetry (Carl Zeiss Meditec,
Dublin, CA). A reliable VF test was defined as one with fewer
than 30% fixation losses, false-positive or false-negative
responses. The VF results were considered reproducible if the
same type, location and index of abnormality were evident in
two consecutive VF tests.

HRT scanning
HRT scans were performed using an HRT2 device. The files
were then transferred to HRT3 software to be processed.
Eligible images had a pixel SD ,50 mm with even illumination,
acceptable centration and focus. Images were also assessed for
misalignment or incorrect contour line placement. Ninety-five
global and sectoral parameters available through the HRT3
Stereometric Parameters export function (table 1) were used as
input for the machine classifiers.

Among the parameters included in the analysis was the
Glaucoma Probability Score (GPS), a discriminatory parameter
that is defined without the need of subjective determination of
the disc margin.9 Another common HRT classifier, the
Moorfields regression analysis,10 was not used in this study
because its clinical output is categorical, as opposed to the other

analyses, which provide continuous numerical values, leading to
an unfair comparison.

Machine classifiers
Seven types of machine learning classifiers were trained: Linear
Discriminant Analysis (LDA), Support Vector Machine with
linear kernel (SVM-linear), Support Vector Machine with radial
kernel (SVM-radial), Generalised Additive Model (GAM),
Generalised Linear Model with Gaussian error (GLM-Gauss),
Generalised Linear Model with binomial error (GLM-bin), and
Recursive Partitioning and Regression Trees (RPART).
Classifiers were selected either because of success using the
method in previously published work,8 11 12 or to ensure an
appropriate breadth of model-type (eg, linear versus non-linear).
All classifiers were implemented in R statistical software (R
version 2.2; R-Project, available at http://cran.r-project.org).

In addition to using these models with all global and sectoral
input parameters (n = 95), specific models were created using
only the 10 parameters with the highest unconditional Pearson
correlation to diagnosis. Backward selection in this 10-predictor
set was performed using Akaike information criteria (AIC). AIC
was used to remove redundancy in the dataset and avoid
overfitting in addition to the use of the machine classifiers that
by themselves extract relevant information. For those methods
for which AIC was defined, we used the full dataset to generate
models for all possible subsets of the 10 parameters, and then
used the predictor set whose model had the best AIC; depending
on the method, these sets had seven, eight or nine parameters.

LDA uses a linear combination of the parameters to separate
subjects into glaucoma and healthy.13 It assumes the data form a
Gaussian distribution, and separates the data with linear
discrimination boundaries that maximise the variance between
the two classes while minimising the variance within classes.
Each new data point is classified based on the likelihood it was
generated by each of the categories, glaucoma or healthy.

SVM maps the multidimensional parameters into a feature
space and creates a hyperplane to separate glaucomatous and
healthy eyes with maximal distance between all cases and the
hyperplane.14 In this study, both linear and radial kernels were
used. SVMs tend to be better than other types of classifiers at
identifying more important parameters and ignoring those that
are less relevant.

GAM assumes the expectation of glaucoma severity can be
expressed as a sum of univariate smooth functions of the
parameters.15 SVMs tend to be better than other types of
classifiers at identifying more important parameters and
ignoring those that are less relevant. GAM cannot be trained
on fewer datapoints than variables, so since cross-validation has
only 25 data points in each fold, the GAM was only trained on
the 10 parameter set, and the smaller eight-parameter set from
backward selection.

GLM is a generalised form of least-squares regression.16 It
assumes that the log of the odds ratio of a subject having
glaucoma over being healthy can be expressed as a linear
function of the provided parameters. The boundary between
glaucoma and healthy is defined as the hyperplane where the
odds of a subject having glaucoma is equal to the odds that the
same patient is healthy. We generated GLMs with both
Gaussian and binomial error models.

RPART is a decision-tree partitioning algorithm.17 It recur-
sively partitions the parameter space along individual para-
meters. The parameters that are chosen to split and the points
at which they are split are chosen in order to maximise
categorisation accuracy, resulting in partitioned regions called

Table 1 Heidelberg Retina Tomograph 3 output parameters.

Parameter G T TS TI N NS NI

Disc area * * * * * * *

Cup area * * * * * * *

Rim area * * * * * * *

Cup/disc area ratio * * * * * * *

Rim/disc area ratio * * * * * * *

Cup volume * * * * * * *

Rim volume * * * * * * *

Mean cup depth * * * * * * *

Maximum cup depth * * * * * * *

Height variation contour * * * * * * *

Cup shape measure * * * * * * *

Mean RNFL thickness * * * * * * *

RNFL cross-sectional area * * * * * * *

Horizontal cup/disc ratio *

Vertical cup/disc ratio *

Maximum contour elevation *

Maximum contour depression *

CLM temporal-superior *

CLM temporal-inferior *

Average variability (SD) *

Reference height *

FSM discriminant function value *

RB discriminant function value *

Parameters in bold were not used as input to machine classifiers.
CLM, contour line modulation; G, global; N, nasal; NI, nasal inferior; NS, nasal superior;
RNFL, retinal nerve fibre layer; T, temporal; TI, temporal inferior; TS, temporal superior.
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leaves. Each new case is classified by majority of the training
cases belonging to the same leaf as the new case.

Data analysis and statistics
Classifiers were assessed using eightfold cross-validation and
leave-one-out (LOO) analyses. For eightfold cross-validation,
the data set was split into eight folds with 25 data points each.
For each classifier, eight different models were generated, using
seven folds to train the classifiers and the eighth to test the
classifier. This was repeated so all eight folds are used as the
testing set once. Classifiers that overfit the data do poorly in
cross-validation, as they perform poorly on all eight test sets.
The average area under the receiver operating characteristic
curve (AUC) for each classifier was computed by pointwise
averaging across folds. The AUCs were compared using the
DeLong method.18

LOO accuracy was also calculated to assess the discrimination
abilities of each classifier, GPS, and the individual parameters.
GPS and individual parameter accuracies were based on
optimised cut-offs, rather than the manufacturer provided
cut-offs, to test our classifiers against the best performance
possible for this data set. LOO accuracy was calculated by
training each classifier on the entire data set except one eye, and
then testing the remaining eye. This was repeated so all eyes
were chosen as the test eye. Accuracy was then calculated as
number of true predictions divided by total number of
observations. The alpha level of significance was set to 0.05.

RESULTS

Subject characteristics
Two hundred and sixty-three patients were retrospectively
evaluated for this cross-sectional study. Twenty-three were
excluded due to non-reliable VFs or non-reproducible defects.
Eleven were excluded due to HRT3 SD .50 mm. Sixteen were
excluded due to ocular pathologies other than glaucoma.
Thirteen subjects had bilateral findings that did not conform
to the inclusion criteria of either group, and were excluded as
glaucoma suspects. If both eyes qualified, one was randomly
selected. A total of 200 eyes (200 subjects) were included in the
study, and their characteristics are summarised in table 2.

There was a significant difference in age, gender, MD and
PSD between healthy and glaucoma subjects. The mean MD
reflects a moderate level of damage in the glaucoma group.

Selected parameters for smaller data sets
Machine classifier analysis was conducted on the complete 95-
parameter set, and smaller sets of 10, nine, eight and seven
parameters. The 10-parameter set was selected as the 10 single
parameters with the best correlation to diagnosis. These
parameters are listed in table 3.

From the 10-parameter set, backward selection using AIC was
performed to find smaller predictor sets for the GAM, GLM-
Gaussian and GLM-Binomial. Because AIC is not well defined
for RPART, backward selection could not be performed, so it
was tested on (1) a nine-parameter set excluding cup area in the
temporal inferior sector, the only parameter excluded from all
parameter data sets created by backward selection; (2) the
narrowed sets created by backward selection for GAM and the
GLMs; and (3) the 10-parameter data set.

Discriminating between healthy and glaucomatous eyes
Among individual HRT3 parameters, the global vertical cup/
disc ratio (vC/D) had the greatest AUC of 0.848 (table 4).
Among the seven GPS sectoral measurements, the global GPS
had the greatest AUC (0.829; data shown for global only).
RPART AUC with all 95 parameters showed a significant
improvement over global GPS, though not over global vC/D.
SVM-radial with all 95 parameters displayed a significant
improvement over global vC/D, as well as over global GPS. All
machine classifiers except GLM-binomial with all parameters
and all RPART with narrowed data sets had an AUC greater
than or equal to global GPS, though other than those previously
mentioned, the differences were non-significant. Both RPART
with all parameters and SVM-radial had a significant improve-
ment in accuracy over global GPS and vC/D with accuracy
improved from 6 to 9.5%. All AUC and accuracy results can be
seen in table 4, and significant AUC curves can be seen in fig 1.

DISCUSSION
In this study, we demonstrated that the use of certain machine
classifiers improves the discrimination ability of HRT as
compared with current methods. Validation of the classifiers’
performance was done through eightfold cross-validation to
generate AUC, and LOO accuracy. These methods provide an
ample training set for the classifiers, while avoiding training the
classifiers on the data set used to test its performance.

Out of the seven types of machine classifiers we trained, RPART
with all 95 of the parameters and SVM-radial were superior over the

Table 2 Subject characteristics

Characteristic
Healthy eyes
(n = 60)

Glaucomatous eyes
(n = 140) p

Age (years) 43.8 (16.1)
(18 to 81)

62.4 (13.7)
(20 to 94)

,0.0001*

Male/female 19/41 66/74 0.042{
Visual field mean
deviation (dB)

20.89 (1.62)
(27.02 to 1.69)

26.67 (7.09)
(227.30 to 0.69)

,0.0001*

Visual field pattern
standard deviation (dB)

1.66 (0.94)
(0.97 to 6.94)

5.96 (4.23)
(1.02 to 14.79)

,0.0001*

Ethnicity 0.17{
Caucasian 51 109

Others 9 31

Disc size (mm2) 1.76 (0.42)
(0.89 to 3.25)

1.93 (0.55)
(0.75 to 3.65)

0.029*

*Two-tailed t test.
{Chi-squared test.

Table 3 Selected parameters for the backwards selection narrowed
data sets.

Parameter
Correlation to
diagnosis GAM

GLM-
Gaussian

GLM-
binomial RPART

Global vertical C/D ratio 0.55 * * *

TI C/D area ratio 0.57 * * * *

Global C/D area ratio 0.54 * * * *

Global cup shape 0.51 * * *

Linear C/D ratio 0.53 * *

TS C/D area ratio 0.52 * * * *

NI C/D area ratio 0.53 * * * *

TI cup area 0.50

NS C/D area ratio 0.48 * * * *

TS cup shape 0.48 * * * *

*Parameters used in the dataset.
C/D, cup/disc; GAM, Generalised Additive Model; GLM, Generalised Linear Model; NI,
nasal inferior; NS, nasal superior; TI, temporal inferior; TS, temporal superior.
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other classifiers, all sectors of the GPS and all individual parameters.
They had the highest AUC and accuracy of all classifiers and
displayed a significant improvement in both AUC and accuracy
over the best GPS and individual parameters. An exception was
RPART’s AUC, whose improvement was just under the significant
level for vC/D. GPS AUC results in our study were similar to those
reported in previous studies ranging from 0.70 to 0.88.19–22

Minimising the data set improved the performance of the
linear classifiers (GAM, GLM and LDA) and decreased the
performance of the non-linear classifiers (RPART, SVM). Most
classifiers with smaller data sets performed better than those with
all parameters except for the non-linear classifiers RPART and

both SVMs (linear and radial), which performed worse with fewer
parameters. This reflects similar results in other studies examining
machine classifiers for glaucoma discrimination.11 12 The smaller
data sets may perform better for the linear classifiers because they
remove confounding ‘‘noise’’ parameters that have minimal
correspondence to glaucoma diagnosis, and help prevent over-
fitting. RPART and SVM, as non-linear methods, are better at
weeding out insignificant information than linear methods,
which may explain why mechanically providing them with less
information may have been detrimental.

It was interesting to observe that the list of the 10 best
correlating parameters (table 3) included nine parameters that
describe the shape of the disc without size consideration or area
ratios that cancel out effects of disc size. When the 10 parameter
sets were narrowed further to improve the performance, the
only parameter of the ten that was eliminated by all data sets
through backward selection was cup area in the temporal
inferior sector, the one parameter of the 10 that is affected by
disc size. This provides evidence that dependence on disc size
can be a confounding factor when using individual parameters
for glaucoma discrimination. Other studies have found similar
results, though they do not emphasise as completely the
parameters not affected by disc size.10 11 23 24

Some of our models found a significant improvement over
current differentiation techniques; however, this improvement
may have been limited by our sample size and sampled
population. Our validation methods do not eliminate confoun-
ders that may be present in our selected study group. It would
be beneficial to test our models on an independent data set;
however this would require an extremely large data set, which
was not feasible at the current date. The cross-validation

Figure 1 Selected ROC curves for best predictive single variable
(vertical cup/disc ratio), best predictive GPS (global), and the two
classifiers that displayed a significant improvement over them.

Table 4 Machine classifier glaucoma discrimination results

AUC Accuracy

AUC AUC SE
Sensitivity at
80% specificity

Sensitivity at
95% specificity

p Value

Accuracy

p Value

Classifier
vs GPS

Classifier vs global
vertical C/D ratio

Classifier
vs GPS

Classifier vs global
vertical C/D ratio

Global vertical C/D
ratio

0.848 0.027 0.766 0.603 0.544 0.790 0.728

GPS 0.829 0.028 0.749 0.374 0.544 0.780 0.728

RPART (GLM-B7) 0.756 0.034 0.648 0.310 0.065 ,0.001 0.685 0.002 ,0.001

RPART (GLM-G8) 0.783 0.032 0.613 0.243 0.199 0.013 0.780 1.000 0.728

GLM-Binomial 0.783 0.032 0.630 0.474 0.223 0.097 0.795 0.670 0.931

RPART (GAM-8) 0.789 0.032 0.688 0.310 0.279 0.027 0.770 0.733 0.488

RPART (9) 0.798 0.031 0.679 0.316 0.362 0.052 0.745 0.232 0.119

RPART (10) 0.805 0.031 0.681 0.316 0.475 0.089 0.740 0.172 0.098

GLM-Gaussian 0.829 0.029 0.764 0.479 0.984 0.568 0.785 0.932 0.862

LDA 0.829 0.029 0.764 0.479 0.984 0.568 0.770 0.733 0.488

GAM (10) 0.837 0.028 0.734 0.524 0.803 0.556 0.785 0.932 0.862

SVM-radial (10) 0.849 0.027 0.797 0.444 0.491 0.960 0.780 1.000 0.728

SVM-linear (10) 0.852 0.026 0.755 0.631 0.475 0.752 0.780 1.000 0.728

SVM-linear 0.859 0.026 0.761 0.620 0.363 0.718 0.825 0.146 0.259

GAM (8) 0.861 0.025 0.789 0.574 0.280 0.492 0.790 0.798 1.000

GLM-Gaussian (10) 0.874 0.024 0.811 0.630 0.135 0.079 0.790 0.798 1.000

LDA (10) 0.874 0.024 0.811 0.630 0.135 0.079 0.790 0.798 1.000

GLM-Gaussian (8) 0.875 0.024 0.797 0.644 0.131 0.087 0.765 0.609 0.386

GLM-Binomial (10) 0.876 0.024 0.805 0.610 0.112 0.162 0.780 1.000 0.728

GLM-Binomial (7) 0.879 0.023 0.797 0.637 0.104 0.088 0.740 0.172 0.098

RPART 0.899 0.021 0.857 0.546 0.014 0.074 0.875 0.001 0.002

SVM-radial 0.904 0.021 0.857 0.648 0.006 0.018 0.850 0.017 0.037

AUC, area under the receiver operating characteristics curve; C/D, cup/disc; GAM, Generalised Additive Model; GLM, Generalised Linear Model; GPS, Global Positioning System;
RPART, Recursive Partitioning and Regression Trees; SE, standard error; SVM, Support Vector Machines.
Bold cells indicate a significant improvement. See Materials and Methods section for explanation of classifier abbreviations. Classifiers with values in parentheses were trained on
narrowed data sets, either selected for that classifier with backward selection or, in the case of RPART, trained on backwards selection data sets from the other classifiers.
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techniques in the current study are the best way to utilise all
data available, while still avoiding training and testing on the
same data at all times. Investigation with a larger data set
would be beneficial, as it may result in further tuning of the
methods and better performance of the machine classifiers.
Another limitation to this study was the comparison of our
classifiers to the GPS classifier, which is trained on separate data
from the HRT3 output parameters. While this is a confounding
factor, the aim was to compare the clinical classifier currently
available with our non-clinically available classifiers.

Our glaucoma group primarily included people with moder-
ate glaucomatous damage, which might improve the overall
AUC over a less advanced group. The discriminating ability
afforded by the machine classifiers in the earliest stages of
glaucoma remains to be determined. Also, the glaucoma group
was significantly older than the healthy. As people age, they
lose neural tissue in the optic nerve, so this age difference may
result in the AUC being overestimated, even though age is not
an input parameter. However, since we compared the AUC of
the machine classifiers, the individual parameters and GPS in
the same data set, the age effect and moderate level of glaucoma
damage can be expected to affect all results equally.

There have been a few instances of using machine learning
classifiersonocular imagingdata forglaucomadiscrimination.6–8 11 12

However, they differ from the present study through the use of
different input data and having no clinically available classifier for
comparison. Huang and Chen6 and Burgansky-Eliash et al12 both
used optical coherence tomography data as input, and no
clinically available machine classifier currently exists to be
compared with their machine classifiers. Mardin et al7 created
classifiers incorporating both visual field and HRT2 exported
parameters, but did not compare these to the HRT3 GPS clinical
output. Zangwill et al8 developed their own HRT2 mean height
contour measurements in 36 sectors along the disc margin and in
the parapapillary region as input for their classifiers, and Bowd et
al11 used the HRT2 output parameters, which are similar to the
HRT3 parameters used in this study, but created two neural
network techniques as their classifiers and compared them with
previously published linear discrimination functions that are not
available in direct clinical outputs. This publication is able to
uniquely compare clinically available classifiers and our classifiers
developed on the most up-to-date HRT data.

In conclusion, machine classifiers can provide a significant
improvement in HRT3 diagnostic power over the current
methods of discrimination of single parameters and GPS. In
particular, SVM-radial and RPART with all parameters dis-
played the greatest improvement in glaucoma discrimination.
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