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Abstract 

Causal learning is often thought to divide into two distinct types of cognitive 

processes and representations: causal perception and causal inference. In this 

chapter, we critically examine the evidence for two distinct kinds of cognitive 

processes, and show that extant experiments do not actually provide much 

evidence directly in favor of this pluralism. Research on causal learning has 

largely proceeded in two different paradigms, and so there are systematic 

methodological confounds that can explain the appearance of distinct processes. 

Moreover, the few experiments to investigate the relationship between causal 

perception and causal inference have provided suggestive evidence that they 

might be less distinct than commonly thought. We thus turn to the space of 

possible theories for (human) causal learning, and argue that there are natural 

theoretical options that have not yet been systematically explored. We describe 

one unexplored possibility in more detail—an integrated account based on 

inference to shared representations. In particular, this proposal holds that causal 

learners opportunistically use a wide range of features to infer the existence and 

strength of unobserved causal connections, and then explain, predict, and reason 

about the world around them on the basis of those inferred connections. We 

conclude by outlining key experiments to test the viability of this proposal. 

 
* Corresponding author: david@danks.org 



 

Keywords: Causal perception; Causal inference; Causal learning; Graphical 

models; Developmental trajectories 

Index terms: Causal perception; Causal inference; Causal pluralism; Causal 

monism; Launching effect; Cognitive representations; Statistical cues 

 

Much has been written about whether causation is a genuine feature of the world (for an 

overview, see Beebee, Hitchcock, & Menzies, 2009), but it seems undisputed that causation 

mediates much of human understanding and experience of the world. Causal knowledge enables 

us to predict future instances, explain past events, design interventions, categorize entities, 

reason about counterfactuals, and more (Sloman & Lagnado, 2015). As such, causation has been 

of longstanding interest to psychologists and philosophers alike. One prominent feature of 

causation is its variability: causal events exhibit diverse observable features, time courses, and 

necessary or sufficient conditions across domains. There is no single way that causation appears 

in our experience, no single phenomenological property that (seemingly) occurs for all causation. 

For example, imagine a rolling ball hitting a stationary ball, after which the latter immediately 

begins to move. Most adults would discern—easily, immediately, without prompting, and 

typically in one instance—that the former caused the latter to move (i.e., causal perception, 

Hubbard, 2013a, 2013b; Michotte, 1946/1963). In contrast, consider the case of determining 

whether smoking causes lung cancer. Here, learning appears effortful and explicit, requires 

multiple observations, and is amenable to top-down influences such as knowledge of other risk 

factors of lung cancer (i.e., causal inference, Cheng, 1997; Sloman & Lagnado, 2015).  

In light of the seemingly distinct ways that humans learn and reason about causal events, 

as well as the diversity of events in the world that appear to involve causation, the idea of causal 

pluralism—the theory that there is a plurality of causal concepts and learning modes—has been 

repeatedly proposed in philosophy (Anscombe, 1971; Cartwright, 2004; Godfrey-Smith, 2010; 

Hall, 2004; Hitchcock, 2007, 2012; Psillos, 2010). Causal pluralism has also been suggested, 

though to a lesser extent, in psychology (Lombrozo, 2010; Waldmann & Mayrhofer, 2016). Even 

when psychologists do not explicitly endorse causal pluralism, they often tacitly assume it in 

their research programs: research on one kind of causal learning rarely incorporates insights from 

research on others, and efforts to investigate potential overlaps between (ostensibly different) 



 

causal concepts have largely been absent (with a few notable exceptions, such as Schlottmann & 

Shanks, 1992).  

Despite the allure of causal pluralism, we contend that it stands on shaky empirical 

grounds. First, the apparent empirical distinction between different notions of causation 

discovered in psychological research is systematically confounded by methodological 

differences. Second, even if one concedes that there are truly different clusters of causal learning 

behaviors, there is research, albeit piecemeal and preliminary, to suggest that the corresponding 

conceptual boundary must be quite blurry. Even if causal pluralism provides a useful first 

approximation of human behavioral data, close inspection reveals the need for either substantial 

modifications or theoretical alternatives. Nonetheless, causal pluralism has remained a prominent 

view in both philosophy and psychology of causation, partly because extant monist theories all 

suffer from their own significant shortcomings. 

In this chapter, we attempt to remedy this latter issue. We propose a new monist account 

of people’s concept of causation, and provide a computational model of cognitive processes 

involving it. In particular, our monist account shows how a single kind of casual concept can 

nonetheless support multiple forms of causal learning and reasoning. This monist concept does 

not privilege any specific type of information a priori, but rather can be inferred from 

spatiotemporal, statistical, and mechanism information. We posit that causal learners 

opportunistically use any-and-all features to which they have epistemic access in order to infer 

causal connections, and then use those inferred connections to explain, predict, and reason about 

the world around them. We show that the new monist concept is capable of explaining existing 

empirical data on human causal learning, including data to suggest interactions between input of 

different modalities. We additionally aim to show that our proposal is not empirically vacuous, 

but rather makes novel predictions that have not previously been explored. 

Before turning to our new account, though, we first survey the data that purportedly 

support causal pluralism. We then show that methodological confounds in experimental 

paradigms, measures, and explanatory foci undermine the conceptual boundaries proposed in 

causal pluralism. We also briefly discuss extant data that make a unitary causal concept seem 

plausible. We consider two existing monist proposals, each of which uses one of the proposed 

causal concepts to ground the other. We then introduce the basic tenets of our proposed monist 



 

causal theory, and provide a high-level explanation of how it can be computationally 

implemented. We show that this account makes testable predictions, and outline some 

preliminary investigations. We conclude with observations and lessons for both philosophy and 

psychology of causation as well as other domains. 

A Brief Argument for Causal Pluralism 

The most common form of causal pluralism in psychology posits two concepts and 

learning modes of causation: causal perception and causal inference. The first mode of 

learning—causal perception—is characteristically found in collisions or other direct physical 

causation. This mode hinges on signature perceptual features of dynamic events, such as the 

spatiotemporal contiguity between agents and recipients during launching (Michotte, 1946/1963; 

Yela, 1952), or the synchrony between the motion onsets of different objects in a chain of events 

(Hubbard & Ruppel, 2013; White & Milne, 1997). More recent research suggests that humans 

distinguish between some categories of causal interactions (e.g., launching vs. entraining) even 

in “low-level” vision (Kominsky & Scholl, 2020). Furthermore, causal perception appears 

impervious to top-down influences such as goals and prior knowledge, similar to some visual 

illusions (Firestone & Scholl, 2016). In most studies of causal perception, adults only need one 

exposure to determine the causal nature of the event. Notably, causal perception appears 

irresistible and phenomenologically salient (Michotte, 1946/1963) even if learners “know” 

otherwise given statistical dependency information (Schlottmann & Shanks, 1992). Infants 

develop the ability to perceive simple launches as causal between 6½ and 10 months of age 

(Leslie & Keeble, 1987; Oakes & Cohen, 1990), and as early as 4½ months of age with 

experience of self-generated action (Rakison & Krogh, 2012).  

In contrast, the second mode of learning—causal inference—is characteristically found in 

learning from repeated experiences, as when one learns that aspirin relieves headaches (or red 

wine can produce them). Causal inference is sometimes subdivided into learning causal strength 

and learning causal structure, though these are not necessarily distinct cognitive processes 

(Griffiths & Tenenbaum, 2005). Spatiotemporal contiguity plays little-to-no role in causal 

inference. Instead, adults typically use contingency information between categorical variables 

(Rottman & Keil, 2012), covariation information between continuous factors (Marsh & Ahn, 

2009; Soo & Rottman, 2018), deviations from base rates (Perales & Shanks, 2003), and other 



 

forms of statistical information. In experiments, participants extract statistical data from 

observation (Steyvers et al., 2003) or generate the data themselves (Hagmayer & Waldmann, 

2007), and then draw conclusions about the existence, strength, and direction of causation. 

Causal inference is typically thought to be more effortful and explicit, and less 

phenomenologically salient, than causal perception. Top-down prior knowledge can readily 

guide causal inference (Hagmayer et al., 2011); for example, it can direct attention to causally 

relevant aspects of an event, or to potential interventions (Kushnir, Wellman, & Gelman, 2009). 

The earliest convincing evidence for children’s causal inference was found in 19-month-old 

toddlers (Sobel & Kirkham, 2006). Causal inference becomes more sophisticated with 

development (McCormack et al., 2013; Waismeyer & Meltzoff, 2017). 

Causal perception and causal inference present as strikingly different cognitive processes 

and behavioral patterns, and so some psychologists have argued that each learning mode requires 

a different kind of causal concept. For example, causal perception has been said to hinge on a 

perceptual concept in which causation is characterized by signature perceptual features that 

indicate a causal connection, such as spatiotemporal contiguity (White, 2014). Or causal 

perception may be grounded in a concept of causation as a mechanistic process that transfers 

power or a conserved quantity from one object to another in ways that yield perceivable signals 

(Wolff, 2014). These psychological proposals align nicely with process- or production-centric 

theories in philosophy, where causation is defined by either a conservation or invariance of some 

quantity through state changes (Dowe, 1992, 2000) or the propagation of causal influence 

through a chain of spatiotemporally contiguous events (Salmon, 1984, 1994).  

In contrast, causal inference seems to be grounded in a concept of causation that 

emphasizes statistical information, interventions, and explicit prior knowledge. That is, causation 

for this type of learning is thought to be the statistical relations between causal variables (Cheng 

& Buehner, 2012; Tenenbaum et al., 2011) or post-intervention probabilities or counterfactuals 

(Sloman & Lagnado, 2005; Waldmann & Hagmayer, 2005). The statistical concept echoes 

several difference-making proposals in philosophy of causation, including those in which a cause 

is statistically correlated with its purported effect (Good, 1961a, 1961b), counterfactually related 

to the effect such that if it had not occurred then the effect would not have (counterfactual, 



 

Lewis, 1974), or manipulable to produce changes in the effect (interventionism, Menzies & 

Price, 1993; Woodward, 2005, 2011). 

The ample (apparent) evidence for different types of causal learning, as well as different 

concepts and paradigmatic features, seems to support causal pluralism in psychology, one 

causation from causal perception and one from causal inference (for a more extensive synthesis, 

see Dinh, Danks, & Rakison, under review). This conclusion is reinforced by philosophical 

arguments for a similar position (Hall, 2004; Hitchcock, 2007). Causal pluralism has received 

explicit endorsement in the field (e.g., Lombrozo, 2010; or Waldmann & Mayrhofer, 2016 for a 

modified causal pluralism). Even when psychologists do not explicitly endorse causal pluralism, 

the field evolves as if causal perception and causal inference are indeed distinct clusters: many 

studies in causal inference exclude factors of causal inference that might be at play, and vice 

versa. Both in theory and practice, causal pluralism is arguably the default. 

Methodological Challenges to Causal Pluralism 

Although the main advance of this chapter is the proposal of a novel monist theory, we 

must first address the extensive body of work seemingly in support of causal pluralism. Our core 

response is that there is a natural alternative explanation (besides causal pluralism) for these 

behavioral and phenomenological data: namely, the systematic methodological differences 

between the two research areas. That is, we contend that the differences between causal 

perception and causal inference can potentially be explained by methodological confounds, 

rather than distinct concepts. Of course, this argument does not thereby establish causal monism, 

but by undermining the main argument in favor of causal pluralism, we open the door for 

consideration of novel theories. We focus here on three methodological confounds (but see Dinh 

& Danks, forthcoming for more systematic consideration of this challenge to causal pluralism). 

 One source of methodological divergence lies in the typical experimental paradigms for 

causal perception and causal inference. In causal perception research, participants usually judge 

individual events of bivariate causation (e.g., launching between two objects). The use of one-

shot presentations in which the cause may or may not be efficacious means that events in causal 

perception paradigms often appear fully deterministic. In contrast, studies of causal inference 

usually encourage (if not require) that participants integrate data from multiple data points, 

whether presented as a table of summary statistics, a matrix of individual trials, or a sequential 



 

presentation of trials. Causal inference studies can involve both simple and complex causal 

relations, ranging from bivariate relations to causal webs with multiple causal mediators. 

Additionally, the causal relations studied in causal inference are often nondeterministic (with the 

probabilities provided through the statistical information conveyed to participants). 

Another difference between causal perception and causal inference research is their 

measures. In causal perception research, adults typically answer questions about the power of the 

cause, whether through free-form responses, forced choices, or continuous rating scales. 

Alternately, implicit measures such as perception of overlap or expectations of the distance that 

the causal recipient should travel (i.e., representational momentum) are used in an effort to 

separate “low-level” causal percepts from the resulting “high-level,” cognitively mediated 

inferences (Wagemans, van Lier, & Scholl, 2006). In contrast, measures in causal inference 

research span from predictions of future successes, to ratings of causal power on a continuous 

scale, to direct interventions on a causal system, and more. That is, measures of causal 

perception require that participants consider only the event they just watched (i.e., individual 

event, token), whereas those of causal inference often require that participants consider a group 

of trials or a causal type.  

 Yet another divergence between causal perception and causal inference research centers 

on the kinds of stimuli (and data) provided to participants. In causal perception, participants 

typically perceive dynamic events that unfold in space and time; temporal and spatial dimensions 

are explicitly presented in the stimuli. Other information about the kinematics of the event is also 

provided modally and directly (e.g., relative velocities, angle of approach). In contrast, the 

stimuli in causal inference research range widely in format, including dynamic events, diagrams 

of possible causal structures, static schematics of individual trials, or descriptions of events that 

accompany a summary table. In causal inference research, dynamic information such as space 

and time often need to be inferred, rather than being provided directly in the stimuli. It is even 

rarer for dynamic information to be presented modally in causal inference research. 

 The methods and measures of each research cluster are highly defensible if one starts 

with an appropriate understanding of the paradigmatic instances of causation for that research 

cluster. The methods and measures of causal perception research are tailored to 

phenomenological aspects of token events, while those of causal inference research are often cast 



 

at the level of causal types. As such, the theoretical perspectives that arise from one research 

cluster often struggle to account for information pertinent to the other research cluster. For 

example, many theories of causal perception have no formal account of how statistical 

information factors into the phenomenological salience of a launching event. Similarly, accounts 

of causal inference fumble at explaining or modeling how the experiential richness of causation 

arises from statistical data and top-down knowledge (cf. thick causation, Cartwright, 2004). To 

be clear, we are not suggesting that any causal perception or causal inference researchers 

(ourselves included!) have used incorrect or inappropriate methods. However, the significant 

differences in methods undermine our ability to draw strong inferences about differences in 

corresponding concepts, at least based on these empirical data. The argument for causal 

pluralism instead reduces to the intuitions with which we started this chapter.  The 

methodologically splintered history of causal learning research makes it difficult to develop a 

principled investigation of the ways in which causal perception and causal inference might 

overlap. 

The Empirical Case for a Unitary Account 

 Closer consideration of the empirical data actually provides some suggestive evidence 

that people might have a unitary concept of causation. In one direction, causal perception can 

exhibit traits typical of causal inference. For example, the perceptual triggers of experiences of 

causal perception, despite our previous characterizations, can be quite fuzzy and amenable to 

learning effects. With repeated exposure to delayed launches during experimental training, adults 

can perceive a delayed launch as causal, at least up to a point (Gruber, Fink, & Damm, 1957). 

Conversely, training with immediate launches narrows the temporal criterion for causal 

perception at test (Powesland, 1959). Adults misremember the order of event segments in a way 

that aligns with a causal interpretation if they perceived the entire event as causal (Bechlivanidis 

& Lagnado, 2016), and spatial criteria for causal perception are subject to similar effects: objects 

are judged as being spatially closer to each other when they are perceived as causally linked 

(Buehner & Humphreys, 2010). Relatedly, when a launch variant with spatial overlap between 

two objects is perceived as causal, adults underestimate the degree of overlap (Scholl & 

Nakayama, 2004). Interestingly, prior knowledge of typical features of causal actors (e.g., 

possession of dynamic parts, the ability to engage in self-propulsion) can constrain causal role 



 

assignment in a causal perception paradigm as early as 20 months of age (Rakison, 2006). These 

findings suggest that causal perception can be sensitive to top-down influences and training 

across trials, which are features more typically associated with causal inference.  

In the other direction, causal inference is responsive to factors often associated with 

causal perception, particularly perceptual details about the dynamics of causal events. For 

example, young children struggle to discount misleading information about spatiotemporal 

contiguity when judging the outcome in a two-cause system. Compared to 9- and 10-year-olds, 

5-year-olds were more likely to predict that an effect would occur immediately even when the 

mechanism was known to be slow (Schlottmann, 1999). Similarly, 3- to 3.5-year-olds were less 

likely to succeed at the blicket detector task when the objects hovered above the machine rather 

than placed on it (Kushnir & Gopnik, 2007). Even though adults can resist the allure of 

spatiotemporal contiguity in their causal judgments, they need clear reasons to do so, such as 

knowledge of a delayed mechanism (McGregor & Buehner, 2009). More recent research 

suggests that adults use small differences in time windows during causal inference to select 

between different potential causal structures (Bramley et al., 2018). Overall, perceptual 

information (e.g., space, time) seems to be integrated with other kinds of information during 

causal inference, and such details are assumed by learners even in the absence of explicit bottom-

up information or direct instruction (Hagmayer & Waldmann, 2002).  

Alternatives to Causal Pluralism: Two Grounding Accounts 

Although causal pluralism has often functioned as the default position, alternative monist 

theories have started to emerge. Essentially all of these alternatives prioritize one of the two 

concepts (perceptual or statistical causality), and then explain the other concept in terms of the 

prioritized one. In one set of alternatives, the perceivable features of causation define the 

underlying concept and statistical features are based on that concept, so we refer to these monist 

accounts as perceptual grounding theories. When we look at causal perception, we find that cues 

such as spatiotemporal contiguity and self-propulsion signal agent and recipient roles in causal 

interactions, and thereby license the inference to a causal relation (Rips, 2011; White, 2014). 

Perceptual grounding theories often propose that learners become sensitive to these cues through 

lifelong experience with causal events that begin in their own experience of exerting change on 

their surroundings. Alternatively, causation might correspond to a continuous chain of events of 



 

the right, force-transmitting kind or mechanism (Ahn & Kalish, 2000; Wolff, 2014). Or learners 

may hold intuitive theories about momentum and physical causality that are made imprecise by 

perceptual noise, other prior beliefs, or even assumed uncertainty (Gerstenberg & Tenenbaum, 

2017). Regardless of the exact story, all perceptual grounding accounts give perceptual features 

content beyond their perceivability, and thereby attempt to explain learning in contexts 

previously thought to be outside of the scope of causal perception. For example, perceptual 

grounding accounts have been offered to explain counterfactual simulations of launching 

(Gerstenberg, Halpern, & Tenenbaum, 2015) or the (context-appropriate) downweighting of 

spatiotemporal contiguity during causal judgments in cognitive development (Schlottmann, 

1999).  

Perceptual grounding accounts have some intuitive appeal and potential explanatory 

power, but also have a number of open questions. For example, even an extended or generalized 

concept of perceptual causation does not seem capable of representing events with few or no 

immediately perceivable features, such as the causal connection between antidepressants and 

depressive symptoms. This causal relation has a noisy time course, many mediators or defeaters, 

and no clear perceptual signatures for the learner to use. Many other phenomena also escape 

ordinary human perception, and yet we clearly learn causal relations, such as the discovery of the 

general shape of planetary orbits and what forces govern such a shape. Perhaps most importantly, 

most accounts of perceptual grounding have no straightforward way of differentiating 

observation from intervention even though human learners do (Waldmann & Hagmayer, 2005). 

In a different set of monist alternatives, researchers aim to prioritize a concept of 

causation based on statistical information, and then build other causal concepts (e.g., perceptual 

causality) on top of that concept (Kemp, Goodman, & Tenenbaum, 2010), and so we refer to 

these as statistical grounding theories. These statistical features can manifest as correlations 

(Good, 1961a, 1961b), contingencies (Perales & Shanks, 2003), interventions (Gebharter, 2017; 

Woodward, 2005), or counterfactuals (Lewis, 1974). Regardless of the types of statistical 

information represented in a causal concept, learners can use them to learn and reason about both 

token- and type-level claims: Smoking increases the chances of developing lung cancer at both 

the population and individual levels. On these accounts, the perceptual features of a causal event 

are only salient (if at all) in virtue of their statistics (Woodward, 2011). For example, 



 

spatiotemporal contiguity almost always predicts successful launching (given certain conditions 

e.g., the recipient is not too heavy for the agent), and so the reliance on perceptual cues is 

entirely reducible to the use of highly statistically significant cues. Notably, several statistical 

grounding accounts can differentiate between observation and intervention (e.g., the do operator 

in causal graphical models). 

Despite their explanatory power, statistical grounding accounts also face open questions 

and challenges. First, these theories struggle with the phenomenological salience and richness of 

many daily causal experiences. There is a clear phenomenological difference between the causal 

perception of our dog chasing after the neighbor’s cat and calculations (even if implicit) of the 

probability of the cat getting hurt. The perception and corresponding beliefs are richer than the 

statistical properties that underlie them, and so suggest that statistical grounding theories must 

provide additional explanations to account for the richness of causal perception. Causal 

perception can provide compelling impressions that diverge from (and cannot be extinguished 

by) statistically driven conclusions, even if those impressions do not dominate learning outcomes 

in the end (Schlottmann & Shanks, 1992). Statistical grounding theories also need a way to 

represent mechanistic information, as there is empirical evidence that people do not conceive of 

causal mechanisms in purely statistical terms (Ahn & Kalish, 2000). And although causal 

perception is not completely immune to top-down influences, it does seem to be significantly 

more resistant to such effects than explicitly statistical causal beliefs. As with perceptual 

grounding theories, these open questions do not thereby show that these theories are false, but 

they should temper our potential enthusiasm for these avenues towards a monist theory. 

Causal Monism: A New Alternative to Causal Pluralism 

Causal pluralism faces significant empirical challenges, and there are legitimate 

theoretical worries about the monist causal learning theories that privilege either causal 

perception or causal inference. Given these concerns, we develop a different type of monist 

theory of causal learning and reasoning in this section. We present this theory below, but we 

emphasize that our primary goal here is to broaden the theoretical space to include a novel, 

empirically testable possibility. Systematic experiments remain a subject for future work. While 

this theory may ultimately be empirically falsified, our understanding of the potential 



 

relationships between causal perception and causal inference is, we suggest, significantly 

advanced by our proposed theory. 

At a high level, this monist theory posits that people have a single, relatively amodal 

representation of “unobservable causal connection.” This theory further posits that people are 

opportunists: they use any-and-all clues accessible to them in their efforts to infer these 

unobservable causal connections, including perceptual cues, statistical information, and verbal 

instructions. Given an inferred causal connection, one can then reverse the information flow to 

predict or infer other, not-yet-observed clues. For example, if I infer a causal connection on the 

basis of statistical information, then I can thereby reason that there is probably some measure of 

spatial and/or temporal contiguity (which might not be observable) mediating that connection. 

Importantly, these different sources of evidence (and targets for prediction and reasoning) do not 

correspond to different underlying concepts of causation, but are simply different pathways 

towards a single concept. This is analogous to the way that my concept of DOG can be activated 

by an image of a dog, the sound of a bark, or someone telling me about their dog (though see, 

e.g., Barsalou, 1999 or Machery, 2009 for arguments that no single, shared concept is activated 

in these different cases). That is, we are not proposing a monist “cluster concept” of causation 

where “C causes E” sometimes means X and sometimes means Y. Rather, this theory posits that 

there is a single coherent (overarching) concept of causal connection that underlies our 

representations of causal structure in the world, but we use many different types of information 

to infer its existence in particular token cases or types of events. 

This high-level proposal can be made precise by formalizing the theory using graphical 

models. Importantly, we are here using graphical models to represent informational relations, not 

necessarily causal ones; there is no problematic circularity of people (implicitly) assuming that 

causal connections cause statistical patterns or spatiotemporally contiguous change. The 

graphical model instead represents the relevant evidential and informational relations. (Of 

course, as with any graphical model, inferences can occur in both directions along an edge; the 

directions provide the pattern of informational dependencies, not restrictions on permissible 



 

inferences.) We start by considering a single case or event, where that case might include any of 

the following information about two factors C and E:1 

1. Spatiotemporally contiguous change in C and E (e.g., a launching event or linked changes 

in magnitude) 

2. Co-occurrence of C and E (e.g., both are present or both are absent) 

3. Control (e.g., via intervention) of one or both of C and E 

4. Verbal content directly about C and/or E 

5. Background experiences that determine prior expectations (discussed more below) 

We can graphically represent the inferential relations as in Figure 1. Specifically, there is an 

unobserved variable “C is causally connected to E” (henceforth, CC) whose possible 

multidimensional values encode presence/absence, causal strength, and any mechanistic or      

spatiotemporal details. CC is an informational driver of the possibly-observed factors 

corresponding to the elements in this list.  

 

Figure 1: Graphical model for monist inference 

Full specification of the (informational) graphical model requires the relevant likelihood 

functions of each observable factor given the presence/absence and strength of an unobserved 

causal connection. Importantly, the graphical model structure implies that we do not need to 

consider direct factor-factor informational relations; everything is mediated through the 

unobserved causal connection. For example, the full graphical model includes P(co-occurrence | 

CC), but not P(co-occurrence | verbal content). Put in different language, the state of CC 

 
1 This list is not necessarily complete and exhaustive. One advantage of this monist account is that it is readily 
extensible if we discover that people employ some other type of cue or feature in causal learning: we simply add that 
type of feature as another “leaf node” that can be used opportunistically to infer an unobservable causal connection. 



 

“screens off” the different potential sources of causal information. As such, inferences to CC 

given some input enable subsequent learning and prediction of new input, whether of the same 

type or of a different type. The inference to CC need not be empirically accurate by some 

scientific standard; learners may infer CC mistakenly or hypothetically, given the data they 

observe. Most critically, inferences to the unobserved (or unobservable) variable CC are not an 

add-on feature, but rather are the unifying feature that binds together various instances of causal 

learning (similarly to the suggestion that abstraction to unobserved relations is key to human 

cognition, as argued by Penn, Holyoak, & Povinelli, 2008; Penn & Povinelli, 2007).   

Given a single case or event, one can straightforwardly infer the probability of a causal 

connection of various types and strengths. Mathematically, this inference is simply standard 

Bayesian updating (though without requiring any of the usual metaphysical or normative 

baggage of Bayesianism). Some of the observable factors might not actually be observed, in 

which case they play no role in the inference. Everything that is observed, however, factors into 

the update about the probabilities of different values for CC. No type of observable evidence is 

privileged on theoretical or conceptual grounds for this inference, though they might have 

different informational values. If the probability distribution over CC changes due to the 

inferential update, then the informational impact of that change can “flow” back to the other 

factors (i.e., the ones that are observable, but not actually observed) in the usual way. That is, if I 

infer that there is probably a causal connection in this case because of factor A, then that change 

in my belief can also produce a revised expectation about factor B in this case (even if I have not 

yet observed B). 

If we observe multiple cases of a type, then knowledge about the probabilities for CC can 

be transferred forward in standard ways.2 Essentially, we are learning the “base rates” of causal 

connections with particular properties in instances of this type. Alternately, we might be 

explicitly told about type-level causal connections, which thereby set the relevant prior 

probabilities. Type-level information about different types could also exhibit structure; for 

example, if I know that dogs typically have a particular causal connection, then I might 

reasonably update my prior probabilities about this causal connection in wolves. These 

 
2 Multiple cases of a type can be represented mathematically using plate notation to capture the idea that these are all 
instances of the same class. 



 

inferences can readily be captured through additional structure linking various CC variables 

(similarly to graphical model representations of between-concept relevance relations, as in 

Danks, 2014). The long-term result is that we can learn both whether a causal connection exists 

in a particular case (e.g., does this aspirin relieve this headache?) and also whether there are 

type-level causal connections (e.g., does aspirin generally relieve headaches?).  

This sketch of a computational model can easily be made fully precise; none of the 

components or pieces are particularly esoteric or unusual (at least, within computational 

modeling). We have omitted the mathematics simply to help maintain focus on the conceptual 

and theoretical aspects of the proposal. That being said, we do need to provide here an account of 

the source of the likelihood functions, even if we skip the precise mathematical formulation. 

Adult humans clearly have various domain-dependent expectations about how causal 

connections manifest in the world, whether in terms of spatiotemporal, statistical, or 

manipulation relationships. For example, adults expect physical causation to be largely 

deterministic; psychological causation, not so much (Yeung & Griffiths, 2015; Strickland, Silver, 

& Keil, 2017). As another example, people plausibly expect that a causal connection in the realm 

of physical objects should (if it exists) exhibit spatiotemporally contiguous changes, while a 

causal connection in the realm of macroscale biological mechanisms should (if it exists) exhibit 

significant temporal gaps between the cause and effect. And these expectations express exactly 

the information required for the likelihood functions. That is, people’s intuitive (default) 

expectations about how causal connections might manifest in observable properties are precisely 

the relevant likelihoods (see Danks, 2018 for a complementary account of default expectations 

for statistical information). 

This monist theory can straightforwardly explain the empirical findings in causal 

perception and causal inference. Given spatiotemporal information, the learner infers the 

possible existence of an unobserved causal connection in this token, and then uses that updated 

belief to provide ratings or answer other questions about the causal connection. Given 

covariation information summed over multiple instances, the learner infers the possible existence 

of a pattern of causal connections for the type, and then provides strength ratings, determines 

post-intervention probabilities, and so forth. In each case, the relevant cognitive processes are 

simply part of the inferences posited by the monist theory. Of course, the monist theory also 



 

predicts that people will draw a number of conclusions from these inferences that are not implied 

by either causal perception or causal inference in isolation; we return to those predictions shortly. 

The key observation here is that this monist theory subsumes the existing theories in the special 

case where our experimental methodologies consider only perceptual or only statistical inputs. 

The monist theory thus fits cleanly with our earlier critique of the evidence for pluralism, as it 

contends that the lack of (apparent) interaction between causal perception and causal inference is 

principally because we have not systematically looked for it (though recall the studies outlined 

earlier in “The Empirical Case for a Unitary Account”). 

This last observation about the monist theory suggests a potential fatal flaw: the theory 

might appear to be simply the concatenation of (the mathematics of) causal perception plus (the 

mathematics of) causal inference. Almost any set of non-contradictory theories can be “unified” 

by concatenating representations of them in a common mathematical language, but such a 

“unification” would tell us essentially nothing about the actual nature of the mind. There must be 

some content to the monist theory that goes beyond the union of the subsumed theories, else we 

have not provided anything more than a mathematical parlor trick. We thus conclude this section 

by outlining three key empirical predictions that are, to the best of our knowledge, distinctive to 

this monist account (and not implied by the concatenation of causal perception and causal 

inference).  

First, people should be able to make predictions symmetrically from one type of 

information to another. For example, when shown a canonically causal perception-evoking 

event, people should be able to make predictions about post-intervention probabilities for this 

type of event. Or when provided with covariational data, people should make some inferences 

about the likelihood of spatiotemporally realized mechanisms in various tokens (perhaps 

different mechanisms in different tokens). The standard pluralist picture implies that this type of 

cross-task information transfer should be difficult or noisy. Monist theories that ground 

perception in inference (or vice versa) predict that cross-task transfer should be asymmetric: easy 

when going from perceptual information to statistical, and hard in the other direction (or the 

opposite prediction if inference is grounded in perception). In contrast, our monist account 

proposes that this cross-task transfer should be straightforward and symmetric. 



 

Second, information about one type of feature should inform future learning using other 

features. Probabilistic updates of CC not only inform reasoning and prediction, but also influence 

future learning. For example, recall that people judge objects to be closer together when they are 

believed to be causally related (Buehner & Humphreys, 2010). This effect was demonstrated 

entirely within the domain of causal perception (i.e., perceptions following actual launching or 

delayed launching events). This monist theory implies that a similar perceptual effect should 

occur if people are instead provided with covariational information indicating that a causal 

connection is almost certainly present in this token, even if people never see the actual collision 

event. There are clearly methodological challenges in testing this prediction; for example, one 

would want to minimize, or at least measure for later statistical control, any potential 

(perceptual) mental simulation by participants in response to the statistical information. 

Nonetheless, this prediction is distinctive to this monist theory.  

Third, both of these effects—cross-task/evidence transfer in learning and in reasoning—

are predicted to be entirely (or mostly) mediated by CC. In our proposed account, the 

information transfer happens because of updates to aspects of CC, rather than direct inference 

from one kind of observable content to another. This latter possibility is what one would expect 

if there were learned associations between different types of observable information. There are 

clearly correlations between the different observable signals of causation, so one might attempt 

to explain cross-task transfer in terms of direct learned associations between those signals. For 

example, spatiotemporally contiguous change might be directly associated with intervention 

counterfactuals since those two go together frequently in a learner’s experience. In contrast, our 

proposed theory implies that this information flow is via CC, and so fixing the values of CC 

(either statistically or causally) should block the cross-task transfer. We are currently developing 

an experimental design to test this more subtle prediction. 

We conclude our proposal by describing some initial data that suggest that perceptual and 

statistical cues to causation can interact flexibly to influence the outcome of causal learning. We 

describe only the qualitative phenomena in this chapter for space reasons.3 This experiment was 

designed to challenge a version of causal pluralism in which the multiple concepts are relatively 

independent. As a result, the experiment cannot distinguish between monism and an interactive 

 
3 The raw data for the experiments described here can be found at https://osf.io/263x5/. 



 

version of causal pluralism whereby different causal concepts can strongly influence and 

constrain one another during learning (Waldmann & Mayrhofer, 2016).4 (For attempts at 

developing differential predictions for these latter two theoretical possibilities, see Dinh, Danks, 

& Rakison, under review.) Nonetheless, the results point towards exactly the type of symmetry 

and flexibility between cue-types that is predicted primarily (though perhaps not exclusively) by 

our monist account. These experiments were all conducted with adults on Amazon Mechanical 

Turk, and all pitched perceptual and statistical cues against one another in a series of 12 

animated, dynamic events. All events involved the motion onset of a stationary object, in 

response to either contact with a moving object (Launch event) or a rapid series of color changes 

between pink and purple in the stationary object before settling on purple (Blink event). These 

two types of events were chosen because we found a sharp divergence between expectations 

after a single successful instance: Launches were expected to be strong and reliable causes of 

motion, whereas Blinks were expected to be weak and unreliable.  

Figure 2: Screenshots of successful Launch (top row) and successful Blink (bottom row) events. 

In unsuccessful events, the recipient remained stationary. 

The key experimental conditions contrasted these strong “perceptual” expectations 

against strong statistical evidence. For example, a participant might see a sequence of Launch 

 
4 We thank Nick Ichien for this important observation. 



 

events that were only 75% successful, or she might see a sequence of Blink events that were 

100% successful. According to standard causal pluralism and perceptual grounding theories, 

participants should give relatively constant cumulative judgments across a sequence of Launch 

events, regardless of statistical information (since the perceptual cues should be overwhelming 

and automatic). In contrast, Blink events do not trigger causal perception, and so learning should 

proceed according to causal inference (and thereby produce a standard learning curve). Statistical 

grounding theories arguably predict that the statistical information should play a major role, 

though perhaps significantly attenuated in Launch sequences due to the strong prior expectation 

of a deterministic relationship. And our monist theory predicts a complex pattern of learning 

(details omitted) as the perceptual and statistical cues are all used opportunistically to learn about 

the type-level causal connections.  

Results bore out the predictions of our monist theory with high congruence between our 

two different measures. The first question asked participants to rate the extent to which an 

apparent cause (Launch or Blink) made the stationary ball move (-100 to +100). The second 

question asked participants to estimate the number of cases in which they would expect the 

stationary ball to move, given 100 cases in which the factor of that series (Launch or Blink) was 

present. For both questions, participants were asked to consider all events that they had seen in 

that series. When every event was successful (i.e., if determinism held), Launch sequences led to 

causal perception-like behavior but Blink sequences led to causal inference-like behavior. (And 

cumulative causal judgments for Blink sequences never reached the levels of Launch sequences.) 

When the sequence was nondeterministic, participant behavior was more complex than predicted 

by either pluralism or the grounding theories. If the first failure event happened on the very first 

trial, then participant judgments were low from the outset, regardless of whether it was a Launch 

or Blink event. A single failure at the very start was sufficient to largely eliminate the exclusive 

use of spatiotemporal cues. And if the first failure event occurred on a later trial, then participant 

judgments for Launch sequences dropped significantly more than for Blink sequences after that 

first failure. That is, the statistical information of a single failure (regardless of location in the 

sequence) had a significantly larger impact on the Launch sequence judgments, but those were 

supposed to be the judgments based on causal perception and so more resistant to statistical 

information! Similar findings occurred across a range of variations in timing of the first failure 

event, as well as pattern of failure events across the sequence. Our tentative conclusion is that 



 

people do not a priori privilege one type of information in causal learning. Rather, people 

opportunistically use and integrate information from diverse cues to infer aspects of the 

unobserved causal structure underlying their observations. 

Conclusion 

In this chapter, we briefly presented the central tenets and empirical support for causal 

pluralism, which is the proposal that human causal learning relies on two distinct kinds of causal 

concepts and modes of learning: causal perception and causal inference. We discussed 

methodological differences between the two research clusters and showed that they confound 

with claims of conceptual distinction between causal perception and causal inference. One 

alternative if we reject causal pluralism is to reduce one form of causal learning to the other, and 

so we reviewed two grounding accounts—perceptual grounding and statistical grounding. In 

contrast, we have proposed a third alternative, namely a monist account in which learners may 

use any and all cues accessible to them to infer the existence of an unobserved causal relation 

represented with a single, amodal causal concept. And once learners infer such causal 

connections, they can then make predictions about future occurrences or inferences about other, 

not-yet-observed, or unobservable features of the inferred relation. Finally, we provided three 

testable predictions of the monist account to distinguish it from a mere (mathematical) 

concatenation of existing theories. It remains to be seen whether our predictions will bear out 

with future empirical tests. Most importantly, we wish to call attention to a lack of systematic 

investigation into the ways in which causal perception and causal inference interact, despite 

extant results pointing to that possibility. 

This chapter exemplifies an additional exercise relevant to philosophers and psychologists 

of causation and beyond. Any theory of empirical import must rely on findings that are 

discovered through particular research paradigms and methods. At the same time, theories 

provide the assumptions and constructs that guide and constrain their own experimental 

paradigms and methods. The interplay between theory and method can be a virtue: for example, 

theory-mediated measurements enable the precise quantification of key parameters relevant to a 

theory when done intentionally (Harper, 2007). Yet without that intentional design, 

methodological specifics can confound with and undermine inferences from data. We suspect 

this has been the case with research in causal learning. We recommend the incorporation of more 



 

diverse methods and measures in future research of causal concepts, as well as an investigation 

of the assumptions underlying those methods and how they might bear out in the data. 
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