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Introduction 

Data from the world only have value if we can use them in some way. For many uses, 

such as predicting the weather, we only need to understand the correlational structure among the 

various features. For other purposes, though, we must know something about the causal structure 

of the environment, including other people: for example, to make accurate decisions, we must 

know the likely effects of our actions; to explain events in the world, we need to know what 

could have caused them; to predict other people’s actions, we must know how their beliefs, 

desires, etc. cause them to act in particular ways; and so on. We extract causal beliefs from the 

patterns we see in the world, even though we never directly observe causal influence (Hume, 

1748), and then use those beliefs systematically in our cognizing (Sloman, 2005). We are thus 

faced with a fundamental psychological problem: how do we in fact learn causal relationships in 

the world, which we then use in myriad ways to adjust or control our environment? 

In particular, we will focus here on the problem of learning novel causal relationships 

given only data from the world, and where our prior knowledge does not significantly aid our 

causal learning.
1
 The paradigmatic learning situation involves trying to determine the causal 

relationships among a set of variables (e.g., hormone levels and a disease, or fertilizers and plant 

growth) given a series of cases, where they are observed one at a time, or perhaps in a summary. 

Most of the theories we will discuss further assume that the variables are binary (typically 

present/absent), and that we can use prior knowledge (including temporal information) to label 

the variables as either potential causes or the effect. Thus, we have a quite well-defined situation 

                                                
1
 Alternately, one could ask how we exploit prior causal knowledge to infer novel causal relationships. That is, how 

do we leverage our prior knowledge in novel situations and environments to draw interesting causal conclusions? 

This question has been studied extensively by Woo-Kyoung Ahn and her colleagues under the heading of 

“mechanism theory” (Ahn & Bailenson, 1996; Ahn, Kalish, Medin, & Gelman, 1995; see also Lien & Cheng, 2000). 

Although not addressed here, there are potentially interesting connections with the work discussed here (Danks, 

2005; Glymour, 1998), and it is important to recognize that data-driven causal learning is not the only kind.  



and experimental design: given observations of a series or summary of cases of binary potential 

causes and effect, determine the causal “influence” of each potential cause on the effect (where 

“influence” is deliberately being left vague).  

A number of different theories have been proposed to explain just how people solve this 

problem, and though there are some known theoretical results connecting pairs of theories, they 

are widely scattered. In addition, recent surveys of the literature (e.g., De Houwer & Beckers, 

2002; Shanks, 2004) have primarily focused on comparisons of the theories to empirical work, 

rather than the interesting connections among the theories themselves. Understanding these 

connections is particularly important from an experimental design perspective, since that enables 

us to determine the class of problems on which the various theories make different predictions. 

This chapter is aimed at providing just such a unification of the theory space, rather than an 

answer to the question of which theory best fits the empirical data. The latter task is particularly 

challenging given the growing evidence that a range of learning strategies occur in experimental 

populations (Lober & Shanks, 2000; White, 2000).  

The central problem identified above is underspecified in certain ways. In particular, the 

temporal relationships of the variables seem to be relevant positively and negatively for 

people’s ability to learn causal relationships (Buehner & May, 2002, 2003, 2004; Hagmayer & 

Waldmann, 2002; Lagnado & Sloman, 2004). For example, if no prior knowledge is provided 

and the potential causes occur significantly prior to the effect, people will tend not to infer a 

causal relationship. Also, people’s understanding of causal relationships seems to be partially 

task-dependent, as their experimental responses depend systematically on the probe question, 

particularly counterfactual vs. “influence” terminology (Collins & Shanks, 2006). These 

complications and subtleties in causal inference are clearly relevant from a theoretical point of 



view, but they have not been a central focus of theoretical work to this point, and so we set them 

aside for the remainder of this chapter. 

The study of data-driven induction of causal beliefs has recently grown substantially in 

both experiments and theories: at least twelve substantively different theories have been 

independently proposed just in the last ten years. Roughly speaking, there are two major 

dimensions on which theories of human causal learning vary: whether they describe dynamic or 

long-run learning; and whether they describe learning of causal parameters or of causal structure. 

The first dimension is quite natural and obvious: (a) “dynamic,” if the theory describes changes 

in causal belief after each observed case; or (b) “long-run,” if the theory describes the causal 

beliefs that the individual will hold after observing a “sufficiently long” sequence (i.e., when the 

causal beliefs have stabilized).
2
 The second dimension parameter vs. structure inference is 

roughly the distinction between learning “C causes E” and learning “how strongly C causes E.” 

Unfortunately, this characterization is not quite right, since parameter learning is a kind of 

structure learning: learning that C has a non-zero (or zero) causal strength implies having learned 

that C causes (or does not cause) E.  

To get a more accurate picture of this second distinction, we will need to make a brief 

excursion in Section 3 into causal Bayesian networks (or simply, causal Bayes nets), a 

mathematical framework from computer science, statistics, and philosophy that has emerged in 

the past twenty years as a normative framework for modeling causal systems. We will return to 

the parameter/structure distinction in more detail in Section 3.2. Before that, however, Section 2 

will survey a variety of dynamical and long-run causal learning theories proposed in the 

                                                
2
 Some recent summaries (e.g., De Houwer & Beckers, 2002) seem to use “associative” vs. “non-associative” (or 

“probabilistic”) where I use “dynamic” vs. “long-run.” However, that work interprets the two classes of theories as 

competing, whereas I will argue that they are complementary. In addition, they rarely provide an explicit 

characterization of “associative,” and so classification of new theories is not always obvious. 



psychological literature. Section 3 will then describe the framework of causal Bayes nets, and 

detail more of the substantial relationships between the various theories. For all of these theories, 

we will focus on inference from observational data. Section 4 will turn to focus on the problem 

of inference from our manipulations and actions in the world around us. This shift in data source 

will reveal further interesting connections among the various theoretical accounts of human 

causal learning. 

A Menagerie of Models 

Many psychological theories of human causal learning can be placed into four families of 

theories, centered on: the well-known Rescorla-Wagner model, a configural cue version of 

Rescorla-Wagner, Cheng’s causal power approach, and hypothesis confirmation testing. In this 

section, we focus on characterizing these families in terms of the within-family relationships: 

connecting dynamical and long-run theories that share certain crucial features. In Section 3, we 

will return to the cross-family comparisons, as well as describing the causal Bayes net 

psychological theories. One historical note: although many of these theories are presented here as 

dynamical/long-run versions of each other, these connections were almost all established only 

after each individual theory had independently been proposed. This section is geared towards 

theoretical clarity, not historical accuracy. A summary of the theoretical relationships is provided 

in Table 1 in Section 3.2. 

Rescorla-Wagner, Its Descendants, and Probabilistic Contrasts 

The Rescorla-Wagner (1972) model (henceforth, the R-W model) is the paradigmatic 

instance of an associationist learning theory: people have beliefs about the associative strengths 

between cues and an outcome, and given a novel case (i.e., a set of cues and an outcome), they 

change their beliefs based on the error in the prediction made by their current beliefs. More 



precisely, if Vi
t
 is the associative strength of cue i after case t, the R-W model predicts that Vi 

after the next case will be given by Vi
t+1

 = Vi
t
 + Vi

t+1
, where the latter term is: 
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 (2.1.1) 

where  is the maximum association supported by the outcome (usually assumed to be 1); i is 

the salience of cue i; and 1 and 2 are the learning rates when the outcome is present and absent, 

respectively (typically with 1  2). In the R-W model, associative strengths only change when 

their corresponding cues occur, and the change is proportional to the “error” between the actual 

occurrence (or absence) of the outcome and the predicted value of the outcome (given by the 

linear sum of associative strengths). 

The R-W model has proven to be a very good model of many animal associative learning 

phenomena (Miller, Barnet, & Grahame, 1995), and has been proposed as a model of human 

causal induction by reinterpreting the associative strengths as perceived causal strengths, in 

which case “cues” are potential causes (Baker, Mercier, Vallee-Tourangeau, Frank, & Pan, 1993; 

Lober & Shanks, 2000; Shanks, 1995; Shanks & Dickinson, 1987).
3
 The R-W model cannot be 

the correct model of human causal learning, however, because it mistakenly predicts that people 

will not update their causal beliefs about a potential cause after a case in which it is absent. 

Retrospective revaluation seemingly only occurs in animals in special conditions (e.g., Blaisdell, 
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 There is significant debate about whether this causal interpretation is a legitimate use of the R-W model. Michael 

Waldmann and his colleagues (Waldmann, 2000, 2001; Waldmann & Holyoak, 1992; Waldmann, Holyoak, & 

Fratianne, 1995) have argued that cues in the R-W model must be the variables learned about first, and so are not 

mapped onto potential causes in cases of diagnostic learning (that is, reasoning from effects to causes). On this more 

narrow view of the R-W model, the dynamic theory I discuss here corresponds to an analogue of the R-W model, 

not to the model itself. 



Denniston, & Miller, 2001; Blaisdell & Miller, 2001), but has been found multiple times in 

human causal learning (e.g., Chapman, 1991; Van Hamme & Wasserman, 1994; Wasserman, 

Kao, Van Hamme, Katagiri, & Young, 1996). Van Hamme & Wasserman (1994; henceforth, 

VHW) and Tassoni (1995) have proposed modified R-W models in which associative strengths 

can change even when a cue is not presented. Although these theories differ in exact details, the 

basic intuition is the same: given information about the occurrence or non-occurrence of other 

cues and the outcome, the absence of a cue can be informative, and so we may need to “error 

correct” a cue’s associative strength even when it does not occur. The short-run behavior of these 

descendants of the R-W model have only been partially explored. 

There has been a long history of research into the behavior of the R-W model in the long 

run (a very limited sample of the research is: Chapman & Robbins, 1990; Cheng, 1997; Danks, 

2003; Gluck & Bower, 1988; Sutton & Barto, 1981). For many interesting cases, the R-W model 

does not have well-defined asymptotic behavior.
4
 Instead, we can only talk of equilibrium states, 

which are themselves sometimes quite difficult to calculate; Danks (2003) provides their most 

general characterization, as well as a general algorithm for determining them. With experimental 

designs and parameter values that are typical of standard practice, the R-W model ends up living 

in the neighborhood of the equilibrium value in the long-run. And for a large class of problems 

described below, the R-W model’s equilibrium state turns out to be the conditional probabilistic 

contrasts for each variable, which were independently proposed as the basis for a long-run theory 

of human causal learning (Cheng & Novick, 1990, 1992; Spellman, 1996). 

The conditional probabilistic contrast, often called conditional P, is essentially a 

measure of conditional association, and the conditional P theory proposes that people’s 
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 The R-W model only has well-defined asymptotes for systems that are (i) deterministic; and (ii) have a perfect 

equilibrium (Danks, 2003). 



judgments of causal influence for each variable will be proportional to that variable’s conditional 

P (Cheng & Novick, 1990, 1992; Spellman, 1996). Suppose Q is some specification of cue 

values for every cue except cue i: for example, cue 1 is present, cue 2 is absent, and so on. Since 

we have n cues, there are 2
n-1

 different Q’s. Given some particular Q, the conditional 

probabilistic contrast for cue i is:  

 Pi.Q = P(E | i & Q) – P(E | ¬i & Q).  (2.1.2) 

In other words, the conditional probabilistic contrast is the change in the outcome probability 

between the i-present and i-absent cases, conditional on Q.  

The various conditional probabilistic contrasts for a particular cue need not all be equal, 

but might differ depending on the particular variable values in the conditioning set. In these 

cases, the conditional P model does not make a determinate prediction. However, if the 

conditional probabilistic contrasts for each variable are defined and equal, then the R-W model’s 

equilibrium state for that problem is exactly conditional P (Danks, 2003). That is, whenever the 

conditional P theory is well-defined, the R-W model makes the same long-run prediction. 

Moreover, in these cases, the VHW and Tassoni variations have the same equilibrium states as 

the R-W model (Danks, 2003); they all make the same long-run predictions as the conditional P 

theory whenever the latter theory makes any prediction at all. We can thus naturally think of the 

R-W model and its descendants as dynamical implementations of the conditional P theory. 

Pearce and Configural Cues 

In the R-W model, each cue has its own associative strength, and the associative strength 

of compound cues (e.g., A and B both occur) is just the sum of the individual associative 

strengths. Pearce’s (1987) theory of associative learning reverses this picture: each compound 

cue has its own associative strength, and the associative strength of individual cues is derived 



from those compound cue strengths. This theory was originally proposed in the animal learning 

literature, but it has since been proposed as a model of human causal learning (Lopez, Shanks, 

Almaraz, & Fernandez, 1998; Perales & Shanks, 2003). More formally, using notation slightly 

different from Pearce, we define S(Q  R) to be the extent of generalization from compound Q’s 

strength to compound R’s strength. So, for example, if VXC is the associative strength for the 

compound cue XC (and this is the only compound cue in which C occurs), then the associative 

strength for the individual cue C (due to XC’s associative strength) is given by S(XC  C)  VXC. 

Pearce (1987) assumed the generalization parameters were symmetric; Perales and Shanks 

(2003) remove that assumption. 

The associative strength of a compound cue changes only when that compound is 

presented. If we let (E) = 1 if the outcome occurs and 0 otherwise, then given the presentation 

of compound cue Q on trial t+1, the change in the strength of Q
t
 is given by: 

 VQ
t+1 = E( ) VQ

t + S Q R( )VR
t

R Compounds

 

 
  

 

 
  

 

 

 
 

 

 

 
 
 (2.2.1) 

Given some set of updated compound cue associative strengths, the associative strength for some 

individual cue C is the weighted (by the generalization parameters) sum of the associative 

strengths of all compound cues containing C. As with the R-W model, this model only rarely has 

true asymptotics, but has well-defined equilibrium states. The equilibrium states for one 

individual cue C and a constant background X were given in Perales & Shanks (2003), and in our 

notation, they are: 
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The equilibrium states for more complicated situations involving multiple individual cues have 

not been determined, but can easily be calculated using the matrix method of Danks (2003), 

since we will again have n equations in n unknowns (though here the n unknowns are the 

compound cue strengths, rather than the individual ones). There are currently no known 

equivalencies between the equilibrium states of Pearce’s model and any other independently 

proposed long-run theories of causal or associative learning (except the connection with causal 

Bayes net parameter estimation provided in Section 3.2). 

Causal Power Estimation 

The R-W, P, Pearce, and other models all essentially try to model the observed 

statistics. No particular metaphysics is proposed to explain the occurrence of those statistics; they 

are simply learned. Patricia Cheng’s power PC theory incorporates a quite different picture of 

human causal learning: it posits that humans assume (or operate as if making the assumption) 

that the influence of a cause on its effect cannot be directly observed, and so the task of causal 

learning is to determine the strength of that unobserved influence (Buehner & Cheng, 1997; 

Buehner, Cheng, & Clifford, 2003; Cheng, 1997; Novick & Cheng, 2004). Focusing on 

generative causes (i.e., those that cause the effect to occur, rather than prevent it), each is 

presumed to have some capacity in the sense of Cartwright (1989) to bring about the effect. 

Moreover, the presence of the cause is necessary, but not sufficient for the operation of the 

capacity; the cause’s capacities might sometimes fail to operate.
5
 We also suppose that there is 

some always-present, generative background cause (whose capacity to produce the effect also 

operates only probabilistically). If the occurrence of C and the operation of its capacity are 

independent of the operation of the background cause’s capacity, then pC, the probability that C’s 
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 For those who favor a purely deterministic metaphysics, the theory works out exactly the same if we suppose that 

each generative cause always brings about the effect, unless there is a cause-specific, unobserved, not-always-

present preventive cause that disables (in some way) the generative cause’s operation. 



capacity operates, can be estimated from purely observational data using the following equation 

derived in Cheng (1997): 

 
( )CEP

P
p C

C
¬

=
|1

 (2.3.1) 

pC is a corrected P, where the correction factor accounts for the fact that some instances of C’s 

capacity operating will also be instances in which the background cause’s capacity was 

operating. That is, sometimes E will be doubly-produced, and so any estimate of C’s causal 

influence must include some information about the likelihood of E’s being doubly-caused. A 

slightly different equation is used to estimate preventive causal power. 

In the power PC theory, the estimation in equation (2.3.1) does not necessarily occur over 

all cases, but only over those in a “focal set”: a set of cases in which the reasoner judges the 

cause’s occurrence and operation to be independent of the background’s operation. The focal set 

also supports the extension of the power PC theory to multiple potential causes: for each 

variable, causal power is estimated for a set of cases in which the reasoner judges the various 

causes’ occurrences and operation to be independent of each other. Typical examples of focal 

sets are: all cases; all cases in which one potential cause is always present; all cases in which a 

potential cause is always absent; and so on. No fully-specified dynamical theory for focal set 

selection has been proposed. 

The power PC theory is an asymptotic theory: it predicts people’s beliefs in the long-run, 

when those beliefs have stabilized. Equation (2.3.2) gives a dynamical theory whose equilibrium 

states are the power PC predictions, where the Vk’s are generative causes, and the Vj’s are 

preventive causes (Danks, Griffiths, & Tenenbaum, 2003). 

 ( ) ( ) ( )
( )
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This dynamical theory is analogous to the VHW and Tassoni variations on the R-W model, 

except that a different prediction function is used. Rather than simply taking the sum of the 

present potential causes’ strengths, we integrate the present potential causes according to the 

underlying metaphysics of the power PC theory. 

Dis/Confirming Evidence 

A quite different way of approaching the problem of causal inference is to suppose that 

people are explicitly testing the hypothesis that C causes E. The most direct way to do so is to 

track one’s evidence for and against the hypothesis (Catena, Maldonado, & Candido, 1998; 

White, 2003a, 2003c). The cases that confirm the hypothesis are those in which both C and E are 

either present or absent, and cases that disconfirm it are those in which C and E differ on 

presence/absence. More specifically, White’s proportion of Confirming Instances (pCI) theory 

predicts that judgments of C’s causal strength will be proportional to:  

 pCI = [P(C & E) + P(¬C & ¬E)] – [P(C & ¬E) + P(¬C & E)] (2.4.1) 

That is, causal judgments are predicted to be proportional to the difference between the relative 

frequencies of confirming and disconfirming instances. (The theory’s name is thus a little 

misleading.) We can also consider a version of pCI in which the various probabilities are 

differentially weighted (White, 2003c) to reflect the possibility that some kinds of evidence 

might be more important than others, perhaps because of rarity or some other asymmetry 

(McKenzie & Mikkelsen, 2000; see also White, 2003b). These weights can easily be 

incorporated into equation (2.4.2) below, and do not make a substantial theoretical difference, 

and so we ignore them for the present purposes. 

In Catena, et al.’s (1998) belief adjustment model, the judgment of C’s causal strength is 

given by an updating equation: Ji = Ji-1 +   (NewEvidence – Ji-1), where  is a learning rate 



parameter (called  by Catena, et al.), and NewEvidence is just pCI (or possibly weighted pCI) 

for the cases seen since Ji-1. That is, the belief adjustment model says that people do not track 

causal strength based on a whole sequence of cases, but rather update their beliefs based on the 

difference between their last judgment and the evidence seen since that judgment. When people 

only make one judgment for a whole series, then the belief adjustment model makes the same 

predictions as the (weighted) pCI model. If people make multiple judgments during observation 

of a series, then  controls the importance of recent cases: if  = 0, then no learning occurs from 

one judgment to the next; if  = 1, then only cases observed since the last judgment matter; 

intermediate values correspond to various weightings of recent versus past data. If the inter-

judgment observation distribution is stationary (i.e., the number of cases of each type is the same 

in every between-judgment interval), then  indicates how rapidly the belief adjustment model 

converges to the (weighted) pCI value. The belief adjustment model obviously depends crucially 

on people’s judgment frequencies, but no non-experimental account of judgments has been 

provided; that is, Catena, et al. (1998) do not say when multiple judgments occur in the real 

world. We thus focus on the pCI theory since it simultaneously functions as a critical part of the 

belief adjustment model, and is fully-specified for more realistic learning situations. 

A shortcoming shared by both pCI and the belief adjustment model is that neither has 

been extended to more complicated situations in which there are multiple potential causes. This 

extension is critical, given the range of experimental phenomena that require multiple causes 

(such as blocking phenomena). One natural extension of the theories would be to continue using 

the pCI equation in its current form, where the various probabilities now must be computed by 

summing over the different possible states of the other potential causes. This extension 

determines a value we can call the “unconditional pCI” for each potential cause. We could also 



consider extensions to “conditional pCI”: the unconditional pCI given a fixed specification of the 

other variable values. As with conditional P, there will be multiple conditional pCIs for a single 

variable. When that value is well-defined, the behavior of the conditional pCI theory is easily 

determinable. Its behavior in other conditions will depend substantially on the way the theory is 

cashed out. To our knowledge, none of these extensions has been endorsed or tested by 

proponents of the pCI or belief adjustment theories. 

Notwithstanding the above concerns, we can naturally inquire about the existence of a 

dynamical theory for estimating pCI.
6
 As with the dynamical theories for conditional P (i.e., R-

W and variants) and power PC, we require an updating equation for the strength estimate for the 

potential cause given the observation of some case. For the pCI theories, we update Cj’s strength 

estimate with the following equation: 

 ( ) ( ) ( )( )ijCEi

j VV j=+ 11  (2.4.2) 

That is, we update the strength estimate based on the difference between the current estimate for 

Cj and either (i) , if Cj and E’s presence/absence is the same; or (ii) – , if their presence/absence 

is different. Note that the presence or absence of other potential causes is completely irrelevant to 

the estimate for Cj. The equilibrium states for this updating function are the unconditional pCI 

values for the particular causal learning situation. 

Unfortunately, the pCI theory simply cannot work in the real world as it is currently 

stated, for the same reason that Hempel’s (1965) theory of scientific confirmation failed: for 

some “C causes E” claim, there will be many ¬C, ¬E things, but very few of those instances will 

                                                
6
 To my knowledge, this is the first appearance of a dynamical theory for pCI or the between-judgment periods in 

the belief adjustment model. 



actually provide any meaningful confirmation of the causal hypothesis.
7
 As an extreme example, 

consider the causal claim that dropping objects on the moon (C) causes them to turn into wedges 

of green cheese (E). Every experience that I have had in my lifetime is an instance of ¬C, ¬E 

with respect to this causal claim. Therefore, since the evidential weight of ¬C, ¬E cases is 

supposed to be at least the same order of magnitude as for C, E cases in the pCI theory, I should 

think it highly likely that the causal claim is true. But clearly these ¬C, ¬E observations in fact 

give me no real information at all about the causal claim. In order to save the pCI theory, we 

need to provide some account of which ¬C, ¬E instances count as relevant for judgments about 

“C causes E”; this is essentially another version of the “frame problem” (McCarthy & Hayes, 

1969). Of course, there is no ambiguity in experimental settings about which cases are relevant, 

but the real world is substantially more complicated. One natural move would be to use only 

pragmatically selected cases; unfortunately, no well-specified theory of the relevant pragmatics 

has been offered. 

Moreover, even if we restrict our attention to artificial situations in which the pCI theory 

is closer to being well-defined (e.g., an experiment), it still has a strange implication: there must 

be a deep flaw in one (or both) of (i) our psychological experiments, or (ii) our actual causal 

cognition. Specifically, suppose that we have equal weights on the four terms in the pCI sum 

(unequal weights are discussed in fn. 9). Except in very particular circumstances (specifically, 

P(C) = 0.5), if C and E are statistically independent, then pCI  0; and if they are associated, then 

                                                
7
 A similar problem arises for the P theory. Since almost all real-world cases will be ¬C (and many will be ¬E), an 

unrestricted application of the P theory should lead to P(E | ¬C)  P(E), which will be approximately zero for 

many E. But this is clearly not the intended application of the P theory (Shanks, 1993). The power PC theory and 

probabilistic contrast models avoid this problem by appealing to “pragmatically determined focal sets.” The various 

associative theories either (i) ignore cases in which the cause is absent (e.g., R-W and Pearce); or (ii) only update on 

unexplained, “salient” absences of the cause (e.g., VHW and Tassoni). 



there is a range of cases for which pCI = 0.
8
 For the highly specific situations tested in an 

experiment only two, temporally ordered, variables, no unobserved common causes, no other 

anomalous circumstances every plausible theory of actual causal influence says that C causes E 

if and only if C and E are associated. Thus, the pCI theory says: when P(C)  0.5, (a) if C does 

not cause E, then people will conclude C does cause E, since pCI  0; and (b) sometimes when C 

does cause E, people will conclude the opposite, since pCI = 0. So even if the pCI theory is the 

best explanation of people’s responses in certain experiments (and there is reason to doubt this; 

see Griffiths & Tenenbaum, 2005), either our experiments are not measuring what we think, or 

else people are systematically wrong in their causal attributions.
9
 The latter possibility, 

systematic error, would be quite surprising in light of our success in moving through our world.
 
 

Causal Learning with Bayes Nets 

The previous section focused on a variety of psychological theories of human causal 

learning. We now turn to consider a normative framework for representing causal structures: 

causal Bayes nets. The causal Bayes net framework originally emerged from a mixture of 

statistics, computer science, and philosophy, and has successfully been applied in a variety of 

contexts (examples from a wide range of fields include: Bessler, 2003; Conati, Gertner, Van 

Lehn, & Druzdzel, 1997; Cooper, Fine, Gadd, Obrosky, & Yealy, 2000; Lerner, Moses, Scott, 

McIlraith, & Koller, 2002; Ramsey, Gazis, Roush, Spirtes, & Glymour, 2002; Shipley, 2000; 

Smith, Jarvis, & Hartemink, 2002; Waldemark & Norqvist, 1999). In this section, I first outline 
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 The derivation is straightforward: pCI and P make the same prediction if and only if P(C) = 0.5. Since P = 0 if 

and only if C and E are statistically independent, we can conclude: if P(C)  0.5, then if pCI = 0, then C and E are 

associated. The converse does not hold, since there are many ways for pCI to differ from a non-zero P, but still be 

non-zero itself. Nevertheless, there are some cases in which pCI  0, but C and E are independent. 
9
 One might hope to save pCI by using unequal weights. While this move helps somewhat for the P(C)  0.5 

situation, it actually harms the theory for the P(C) = 0.5 situation. Specifically, regardless of P(C), we have: (i) For 

all situations and a measure one set of weights, [statistical independence  pCI  0]; and (ii) there are situations and 

a measure zero set of weights such that [statistical association  pCI = 0].  



the causal Bayes net framework, and several psychological theories of human causal learning 

that have been based on it. This discussion is not intended as a formal introduction to causal 

Bayes nets; many other, more comprehensive introductions are available elsewhere (e.g., 

Glymour & Cooper, 1999; Pearl, 2000; Spirtes, Glymour, & Scheines, 1993). I then show how 

Bayes nets provide a powerful lingua franca in which to express almost all of the other extant 

psychological theories. Also, one of the real strengths of causal Bayes nets is their ability to 

model manipulations in the causal system. We will return to that issue in more detail in Section 

4. One final note before continuing: the term “Bayesian” has become loaded with substantial 

theoretical baggage, and it is important to realize that the word “Bayes” in the framework name 

is due only to historical accident
10

; there is nothing intrinsically Bayesian about causal Bayes 

nets.  

An Introduction, and Applications to Human Causal Learning 

Suppose we have a set of variables.
11

 In this setting, the variables might be the various 

cues and outcomes, and the possible values for each variable would be present or absent; more 

complicated sets of variables are also possible. Additionally, if we have time series data, the 

variables might be time-indexed. A causal Bayes net is composed of two related pieces: (i) a 

directed acyclic graph (DAG) over the variables; and (ii) a probability distribution over the 

variables. In the DAG, there is a node for each variable, and X  Y means “X causes Y,” though 

no particularly strong metaphysical theory of causation is required; Woodward (2003) carefully 

explores the metaphysical commitments of causal Bayes nets. The probability distribution is a 

specification of the probability of all possible combinations of variable values. These two 

components are connected by two assumptions: 

                                                
10

 They were originally used to improve performance on Bayesian updating, principally in medical diagnosis. 
11

 I will assume throughout that the variables are discrete. Structural equation models are the continuous-variable 

analogues of causal Bayes nets, and every claim in this chapter also holds for them. 



Causal Markov Assumption: Every variable is independent of its non-effects 

conditional on its direct causes. 

Causal Faithfulness Assumption: The only probabilistic independencies are those 

entailed by the causal Markov assumption. 

These two assumptions are essentially claims about the ways in which causal structure 

reveals itself in observable statistics or probabilities. They could be empirically false in certain 

domains, but there are reasons to think that they hold of many systems (Glymour, 1999). 

Moreover, there is growing evidence that people naturally make these assumptions, particularly 

the causal Markov assumption (Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004).  

The two components of a causal Bayes net describe different kinds of causal information: 

the DAG encodes the qualitative causal structure; and the probability distribution encodes the 

quantitative types and strengths of (i.e., the parameters for) the various causal influences. 

Thinking about causal Bayes nets in this way helps illuminate the two assumptions: the causal 

Markov assumption says (roughly) that we don’t need to determine the parameters for variables 

not connected by an edge since there is no direct causal influence; the causal Faithfulness 

assumption says (roughly) that the parameter values do not obscure the causal structure, for 

example by multiple causal pathways exactly offsetting each other. In this framework, the 

distinction drawn at the end of Section 1 between structure and parameter learning corresponds 

to learning about the DAG and probability distribution, respectively. 

In addition to modeling known causal structures, a causal Bayes net can be learned from 

purely observational data given the causal Markov and Faithfulness assumptions (experimental 

and mixed data are discussed in Section 4). That is, given purely observational data and these 

two assumptions about the way in which causation reveals itself in associations, we can often 



recover substantial parts of the actual causal structure. This result is perhaps surprising, given the 

oft-repeated mantra that “correlation does not imply causation.” While this statement is true for 

single pairs of variables, it is not true for patterns of correlations (given these two assumptions). 

A simple example might help to show why. First, define a “causal connection” between X and Y 

to be one or more of: (i) X causes Y; (ii) Y causes X; or (iii) there is an unobserved common cause 

of X and Y. Now suppose that we have three variables, A, B, and C, and that the only 

independence among these variables is between A and C, unconditionally. From these data, we 

can conclude that (i) there is a causal connection between A and B, as well as B and C; but (ii) B 

does not cause either A or C; and (iii) there is no causal connection (direct or indirect) between A 

and C. To illustrate just one of these conclusions, consider (ii), and suppose instead that B causes 

C. That implies that there must be an indirect causal connection between A and C, where the 

exact nature of the connection depends on the causal connection between A and B. But an 

indirect causal connection implies unconditional association (because of the causal Faithfulness 

assumption), which contradicts the known data. Hence, we can conclude that B does not cause C. 

A variety of learning algorithms have been developed within the machine learning 

community over the past fifteen years that exploit this fact that we can infer some causal 

structure from patterns of correlations (Chickering, 2002; Heckerman, 1998; Spirtes, et al., 

1993). Although the algorithms differ in important details, they all infer possible causal 

structures from patterns of conditional and unconditional associations and independencies. That 

is, the algorithms determine (in varying ways) the set of causal structures that could have, or 

were likely to have, produced data such as that actually observed. Roughly speaking, these 

algorithms divide into two camps: constraint-based algorithms determine the full set of possible 

causal Bayes nets (including those with unobserved common causes) from the pattern of 



statistically significant independencies and associations; Bayesian and score-based algorithms 

search through the space of graphs, typically in a heuristic manner, to find causal structures that 

are highly probable, given the observed data. Recovering causal connections from observation 

correlations using these algorithms is more than a theoretical possibility: causal Bayes nets have 

been applied in a wide range of domains for both causal discovery and various types of inference 

(see references in the introduction to this section). That being said, they are not an ideal 

representation for some domains, such as feedback or epidemiological models. Perhaps more 

importantly for cases of human causal learning, causal Bayes nets do not currently provide good 

models of continuous time phenomena, though continuous time Bayes nets are the subject of 

ongoing research (Nodelman, Shelton, & Koller, 2002, 2003). 

For other situations, causal Bayes nets provide an excellent representational framework 

for causal relationships; the causal learning situations modeled by psychological theories form 

one such class of suitable situations. Thus, a natural strategy would be to test whether people 

represent and learn these causal structures as though they were causal Bayes nets. A number of 

different researchers have pursued this line of thinking, which has resulted in essentially two 

different kinds of causal Bayes net-based psychological theories. One approach has been to use 

causal Bayes net learning algorithms to provide a computational-level account (i.e., a rational 

analysis) of causal learning (Gopnik & Glymour, 2002; Gopnik, et al., 2004; Gopnik, Sobel, 

Schulz, & Glymour, 2001; Griffiths & Tenenbaum, 2005; Steyvers, Tenenbaum, Wagenmakers, 

& Blum, 2003; Tenenbaum & Griffiths, 2001, 2003).
12

 That is, this work focuses on 

understanding the high-level relationship between the observed cases and people’s causal 
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 These papers use a mix of constraint-based and Bayesian learning algorithms. However, the differences are not as 

great as they might appear. In particular, since constraint-based algorithms do not care about the source of the 

association/independence judgments, one could easily use Bayesian statistics to calculate the associations and 

independencies. See Danks (2004) for more details. 



judgments, without necessarily arguing for any particular algorithm by which those judgments 

are reached. Although specific learning algorithms are, of course, used in deriving predictions, 

no particular descriptive claim is intended by their use. Rather, the claim here is that people act 

rationally (i.e., according to the normative prescriptions of causal Bayes net learning algorithms), 

even though they might not actually be using causal Bayes net learning algorithms. For example, 

Tenenbaum & Griffiths (2001) argue that people make judgments as though they are Bayesian 

learners of causal Bayes nets, but note that 
2
 estimates are a simple, close approximation of the 

“rational” prediction, and would be indistinguishable for all of their experiments. 

A quite different use of the causal Bayes net framework is to argue that people are 

essentially doing top-down search over causal Bayes net structures (Lagnado & Sloman, 2002, 

2004; Waldmann, 2000, 2001; Waldmann & Martignon, 1998). Sometimes referred to as “causal 

model theory,” the representation of causal beliefs was inspired in part by causal Bayes nets 

(particularly Pearl, 1988), but uses an independently developed learning mechanism (Waldmann, 

1996; Waldmann & Holyoak, 1992; Waldmann, et al., 1995). Specifically, learning is top-down: 

people use prior beliefs (e.g., beliefs about temporal order, intervention status, or other prior 

domain knowledge) to determine an initial causal structure, estimate the strengths of influences 

based on that structure, and then revise their beliefs about the underlying causal structure only as 

necessary. This last step is obviously of central importance, but has not been significantly 

explored. This approach can also be represented as a set of restrictions on the learning process in 

the rational analysis approach (e.g., as a highly skewed prior distribution for Bayesian learning 

of causal Bayes nets). 

The causal Bayes net approaches are not necessarily direct competitors of the other 

psychological theories. In particular, both of the causal Bayes net approaches typically assume 



some situation-dependent prior knowledge constraints on the particular form(s) that causal 

influence can take, where these restrictions often correspond to one of the other extant 

psychological theories. That is, the causal Bayes net approaches typically agree with one or 

another of the other psychological theories about causal influence estimation once the causal 

structure has been learned. The causal Bayes net approaches differ in that they posit a structure 

learning step that is conceptually and sometimes algorithmically prior to the parameter 

learning step. They argue that people do not infer the quantitative causal influence (the 

parameters) until they determine that there is a qualitative causal influence (the graphical 

structure). We will return to this connection in Section 4. 

A Metatheoretic Structure Based On Causal Bayes Nets 

This connection between the causal Bayes net approaches and the other extant 

psychological theories points to an idea: perhaps all of the other psychological theories can be 

completely explained as doing parameter estimation on some fixed causal structure. This 

intuition turns out to be exactly right, as we can represent the range of theories in a single, 

metatheoretical structure using the causal Bayes net framework. Consider the DAG in Figure 1, 

where B is some always-occurring background variable, and wC and wB are parameters 

associated with the edges (and used below). 

--------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

--------------------------------------------- 

To turn this DAG into a causal Bayes net, we must also provide a probability distribution for C 

and E. Since C is an exogenous variable (i.e., one with no cause within the system), we need 

provide only its base rate. For the distribution for E, we can specify a function whose “free 



parameters” are the wB and wC parameters in Figure 1, and whose input variables are whether 

each parent variable occurs.
13

 For example, the probability of E might be given by wB, plus wC 

when C occurs: P(E) = wB + wC  (C). (Remember that (X) = 1 if X is present, 0 otherwise, and 

that B is always present.) For this function for P(E), PC is the maximum likelihood estimate of 

wC (Tenenbaum & Griffiths, 2001).
14

 That is, the one-potential cause P theory can be 

interpreted as a maximum likelihood estimate of a parameter in a fixed-structure causal Bayes 

net with a particular functional form. 

In fact, we can provide an even stronger result. Consider the DAG shown in Figure 2. 

--------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

---------------------------------------------  

The conditional P for variable X is a maximum likelihood estimate of wX when the probability 

of E is the sum of the w-parameters for the occurring variables (Tenenbaum & Griffiths, 2001): 

 P(E) = wX  (X) (3.2.1) 

And given the equivalence between conditional P and the equilibrium states of the R-W model 

(and VHW and Tassoni variations), we can reinterpret these dynamical theories as algorithms for 

learning the maximum likelihood values of the parameters. That is, all of the theories in section 

2.1 are slightly different ways to do parameter estimation in a fixed-structure, fixed-functional 

form causal Bayes net. 

Alternately, suppose the functional form for P(E) in Figure 1 is given by:  

 P(E) = wC  (C) + wB – wC  wB  (C)  (3.2.2) 
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 This is not the only way to specify P(E), but it is convenient for our purposes. 
14

 All proofs are omitted due to space considerations, but are available upon request from the author. 



The causal power in Cheng’s power PC theory is the maximum likelihood estimate of wC in this 

function (Glymour, 1998; Tenenbaum & Griffiths, 2001). For multiple causes, causal power is 

the maximum likelihood estimate of the w-parameters in Figure 2, where the functional form is 

the natural multivariate extension of equation (3.2.2): a multivariate noisy-or gate for generative 

causes, or a noisy-and gate for preventive causes (Danks, et al., 2003). No results are known 

about the “parameter estimation properties” of the recent extension of the power PC theory to 

interactive causes (Novick & Cheng, 2004). The power PC theory and corresponding dynamical 

theory are thus maximum likelihood parameter estimators for the exact same causal structure as 

the conditional P theory; they make different predictions because they assume different 

functional forms for P(E) in that causal Bayes net. 

The story is a bit more complicated for Pearce’s theory and its equilibrium states because 

of the generalization parameters. For one potential cause (Figure 1), VC in Pearce’s theory is the 

maximum likelihood estimate of the wC term (and VX for the wB term) for the P(E) function:  

 P(E) = S(CB  B)
(C)

  wB + 
S B CB( )

1 C( )( )

S CB B( )
  wC. (3.2.3) 

That is, in Pearce’s theory, the probability of the effect is a weighted sum of both w-parameters, 

where the weights depend on whether C is present or absent. It is currently unknown whether the 

above equation for P(E) can be extended to the multiple-cause situation depicted in Figure 2. 

Not all of the previously discussed theories can be represented in this way, however. In 

particular, the pCI theory cannot be represented as a parameter estimator for the causal Bayes net 

in Figure 1. Since it is unclear how to extend pCI to multiple potential causes, we focus here on 

the one-cause situation. In the causal Bayes net framework, if C and E are unconditionally 

independent, then the causal Faithfulness assumption implies that there cannot be a graphical 

edge between them (i.e., C does not cause E), and so there must be a zero w-parameter in Figure 



1. Therefore, for any theory that can be represented as a causal Bayes net parameter estimator, it 

must be the case that unconditional independence between C and E (in the one-cause situation) 

implies a zero w-parameter. pCI fails this requirement: as noted earlier, if P(C)  0.5 and C and 

E are independent, then pCI  0. Therefore, there cannot be a (Faithful) functional form for the 

causal Bayes net in Figure such that pCI is the maximum likelihood estimate of wC.
15

  

Given all of these results, we can place these various theories into three distinct columns 

in the single, metatheoretic structure shown in Table 1, where names are provided for the more 

common theories. (Literature references for each cell can be found in the sections above. 

Numbers in parentheses indicate equations.)  

--------------------------------------------- 

INSERT TABLE 1 ABOUT HERE 

---------------------------------------------  

Each row of the table represents a class of theories: the first four rows contain various parameter 

estimators, and the fifth row describes the “native” causal Bayes net structure learning 

algorithms. For the parameter estimators (the first four rows), there are shared relationships 

between the columns: (i) the long-run behavior (typically, the equilibrium state) of the dynamical 

models is the asymptotic model; (ii) the asymptotic model is a maximum likelihood estimate of 

the w-parameters in the Bayes net function (for the causal Bayes net of Figure 2); and (iii) the 

Bayes net function is for the first three rows the prediction function for the error-correction 

term of the dynamical models. For the structure learning algorithms, the relationships are a bit 

different, since they are also learning the graphical structure of the causal Bayes net. That row is 

included primarily to highlight the contrasts with the parameter estimation theories. 
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 Griffiths & Tenenbaum (2005) have provided a rational “approximate justification” of pCI as causal Bayes net 

structure learning, but their reconstruction requires one to make highly implausible assumptions. 



Not All Data Are Created Equal: Learning from Manipulations 

The data used by the theories in Section 2 are purely observational: cases where we only 

see the naturally occurring values of each variable. But we often get data from our manipulations 

of the causal systems around us; a simple example is flipping a light switch to figure out what it 

causes. Moreover, there can be a substantial difference between observing and manipulating a 

variable. The observation that someone has nicotine stains on her fingers licenses the inference 

that she (probably) smokes; intervening to force someone to have nicotine stains on her fingers 

eliminates the support for the inference to her smoking. The variable values in an observation are 

due to the causal structure that is “in the world”; in contrast, manipulating a variable changes the 

causal structure so that a variable’s value depends on us, rather than its normal causes. In this 

example, the nicotine stains in the second case are due solely to our manipulation, which is why 

we cannot infer anything about the person’s smoking behavior.  

In this example, the manipulation yielded less information than the observation, but 

sometimes manipulations are more informative. Consider the simple case in which X and Y are 

observed to be associated. All we can conclude is that there is some causal connection between X 

and Y, but we don’t know what it is: (i) X causes Y; (ii) Y causes X; (iii) an unobserved common 

cause of X and Y; or some combination of these possibilities. Now suppose that we can 

manipulate X and Y independently, and then check whether they are associated. The outcomes of 

the manipulations will depend on the underlying causal structure, and so we summarize the 

inferences we can make in each possible outcome pair in Table 2. 

--------------------------------------------- 

INSERT TABLE 2 ABOUT HERE 

---------------------------------------------  



For example, suppose that X = nicotine stains (present or absent) and Y = smoking (present or 

absent). These variables will be associated if we manipulate Y, but not if we manipulate X (for 

the reasons discussed earlier). We are thus in the upper-right hand cell of the table, and so we can 

(correctly) conclude that smoking causes nicotine stains, and that there might also be an 

unobserved common cause of the two variables. Observations alone would only tell us that there 

is some causal connection between them, but not its form. Being able to manipulate the variables 

thus led to more learning than given observations. In general, manipulations give us more 

information, particularly about direction, for individual causal connections, but at the cost of 

changing the causal structure. Observations show us the full causal structure, but at the cost of 

reduced information about the specific causal connections. Sometimes manipulations are the best 

way to learn; sometimes observations are superior; often, a combination is best.  

We might wonder whether people can exploit this informational difference in learning. In 

fact, recent research suggests that we learn causal structure substantially better when we can 

manipulate the causal system (Gopnik, et al., 2004; Kushnir, Gopnik, Schulz, & Danks, 2003; 

Lagnado & Sloman, 2004; Schulz & Gopnik, 2004; Sloman & Lagnado, 2004; Sobel & Kushnir, 

2003, In press; Steyvers, et al., 2003). Furthermore, we can understand this advantage by 

considering the representation of manipulations within the causal Bayes net framework (Pearl, 

2000; Spirtes, et al., 1993). A manipulation on target X is represented by the introduction of a 

new direct cause of X that represents the manipulation occurring or not. When the manipulation 

does not occur, the causal system functions as normal; the causal influence of the manipulation is 

simply inactive. When the manipulation occurs, the other causes of the manipulated variable no 



longer matter, and so we can remove (or “break”) those edges in the causal Bayes net.
16

 This 

transition is shown in Figure 3. 

--------------------------------------------- 

INSERT FIGURE 3 ABOUT HERE 

---------------------------------------------  

And notice that smoking and nicotine stains will be independent in the right-hand causal system, 

since there is no causal connection between the two. The causal Bayes net representation of 

manipulations thus correctly captures our intuitions. 

In addition to providing an excellent representation of the impact of manipulations, the 

causal Bayes net framework also gives a natural account of learning from manipulations. That is, 

the learning algorithms discussed in Section 3.1 can be straightforwardly adjusted to incorporate 

exclusively post-manipulation data, or even mixtures of observational and manipulation data. 

Moreover, there are also causal Bayes net accounts of “active learning”: choosing the 

manipulation or experiment (or series of manipulations) that maximally reduces one’s 

uncertainty about the underlying structure (Eberhardt, Glymour, & Scheines, 2006; Tong & 

Koller, 2001). Because of this natural integration of manipulations into the causal Bayes net 

framework, no adjustment is needed for any of the psychological accounts of human causal 

learning that are based directly on that framework.  

The story is more complicated for the “traditional” psychological theories (i.e., those in 

Sections 2.1-2.4), since none of them explicitly discuss the observation/manipulation distinction. 

In fact, the lack of this distinction in the traditional theories, and the importance of the distinction 
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 As a technical aside, a variable being “edge-breaking” is actually sufficient but not necessary for it to count as a 

“manipulation” on this scheme. A more precise characterization of ‘manipulation’ can be given in terms of sources 

of variation in the target variable that are independent of the other variables in the system. See the Manipulation 

Theorem of Spirtes, et al. (1993) for a precise statement. 



in the causal Bayes net framework, has been a crucial motivation of much recent experimental 

research on human causal learning. However, the re-description of those theories in terms of 

parameter estimation in a specific causal Bayes net provides one explanation for the lack of 

focus on this distinction: namely, that there is no observation/manipulation distinction for the 

potential causes in the fixed causal Bayes net in Figure 2. Given that we know (or assume) that 

the causal system has the structure in Figure 2, we can make exactly the same inferences either 

about the parameters or about the likelihood of the effect occurring given either (a) 

observations that the potential causes have some values; or (b) manipulations to force the 

potential causes to have exactly the same values. In addition, if we want to know which variable 

to manipulate to bring about the effect, we can simply use the observational probabilities to 

determine which variable would be most efficacious. This result might seem a bit surprising, but 

notice that the manipulations all take place on variables that have no edges directed into them, 

and so the manipulation does not break any causal connections (within the system). The 

manipulation/observation distinction only matters when the manipulation is on some variable 

that has causes in this causal structure. None of the potential causes in Figure 2 meets this 

requirement, and so the distinction is not relevant for learning or inference. Of course, the 

parameter estimation theories could resist this reinterpretation, but then they must provide some 

explanation of the observation/manipulation distinction, which seems to be quite important in 

human causal learning. 

If we apply this reinterpretation to the traditional psychological (parameter estimation) 

theories, then they can explain the manipulation data and experiments, though at a cost. First, 

there is a potential rhetorical cost. Several of the theories were originally developed within the 

animal learning community (e.g., Pearce, 1987; Rescorla & Wagner, 1972), and so are 



sometimes accompanied by rhetoric about there being no distinction between learning 

covariations and causation, or about causal learning being just a type of covariation learning (De 

Houwer & Beckers, 2002). That rhetoric is no longer legitimate in this reinterpretation of the 

parameter estimation theories, since the observation/manipulation distinction is now being 

explicitly drawn in the framework. We just happen to know (or assume) a causal structure in 

which we can learn, predict, and make decisions equally well given the two kinds of information. 

In this framework, there really is a difference between beliefs about correlations and beliefs 

about causation, but they happen to coincide in these particular learning situations. 

More importantly, the traditional psychological theories must make a choice about 

theoretical scope in this reinterpretation. One option is to argue that the parameter estimation 

theory explains and predicts all parts of data-driven causal learning. That is, to argue that people 

assume the causal structure in Figure 2, and so cannot learn different causal structures. This 

strategy is unlikely to succeed, since there is substantial experimental evidence that people can 

learn other causal structures, such as a chain, or a common cause (Lagnado & Sloman, 2002; 

Steyvers, et al., 2003; Waldmann, et al., 1995), and even that rats can learn such structures 

(Blaisdell, Sawa, Leising, & Waldmann, 2006). Alternately, one could narrow the scope of the 

parameter estimation theory to apply only after the causal structure has been determined (where 

some other mechanism handles the structure learning). This option results in a theory such as 

Waldmann & Martignon (1998), in which people estimate each “edge parameter” according to 

the power PC theory, but use another algorithm to determine the structure in which estimation 

occurs (see also Danks, et al., 2003; Tenenbaum & Griffiths, 2003). In this option, the parameter 

estimation theories explain less than has previously been thought. 

Conclusion 



Many of our cognitive activities presuppose beliefs about causal relationships in the 

world, and a range of theories have been proposed to explain how we make causal inferences 

from our observations and manipulations of the world around us. The primary concern in the 

psychological literature to this point has been on the successes and failures of these theories at 

predicting various experimental data. This focus has led to less exploration of the relationships 

among the theories. Despite the fact that many of the theories were independently proposed, 

there are numerous interesting relationships among them. In particular, many of the theories are 

dynamical or long-run versions of each other; there are connections across explanatory levels 

that provide a better understanding of the “theory space,” as well as support the design of better 

crucial experiments among the theories. For example, we can see that there is little point to 

performing an experiment to distinguish between the R-W model and (the long-run version of) 

the conditional P theory, since the former is a dynamical version of the latter. 

More importantly, we can use the framework of causal Bayes nets to demonstrate that 

most of the extant psychological theories have essentially the same structure: they are parameter 

estimators for a fixed-structure, fixed-functional form causal Bayes net, where the precise 

functional form differs between the theories. These theories (almost) all focus on the estimation 

of quantitative strengths of causal influence, and thereby infer causal structure only indirectly 

(through inference of zero causal strength). Moreover, various theoretical considerations – 

particularly the observation/manipulation distinction – point towards the vital importance of 

correct inference of causal structure. But rather than concluding (as one might) that the lack of 

structure learning in the parameter estimation theories implies that they are deeply flawed, we 

can again use the causal Bayes net framework to show the vital role played by these theories: 

they provide accounts of the types of causal “functions” that people will consider when inferring 



causal structure. The “theory space” of functional forms has been extensively explored in the 

past fifteen years of research on human causal learning; distinguishing the various possible 

structure learning algorithms and determining their empirical accuracy remains a substantial 

open research problem. 
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Table 1: Metatheoretic Structure 

Dynamical Model Long-run Model Causal Bayes net function 

R-W and variants (2.1.1)  Conditional P (2.1.2) Sum of present cue strengths 

(3.2.1) 

(Generalized) Pearce (2.2.1) One-cue: (2.2.2) & (2.2.3); 

Multiple-cue: General 

procedure, but no equations 

One-cue: Equation (3.2.3); 

Multiple-cue: Unknown 

Equation (2.3.2) Power PC (2.3.1) Noisy-OR/AND (3.2.2) 

Equation (2.4.2)  pCI/belief adjustment (2.4.1) None exists 

Bayesian updating; dynamic 

estimation of independencies 

and associations; testing the 

current causal model 

Arbitrary causal Bayes net 

structure learning 

Various possible functions, 

depending on prior knowledge 

or biases 

 



Table 2: Possible Causal Models Given Manipulations 

 Independent after Y manip. Associated after Y manip. 

Independent after X manip. Unobserved common cause Y causes X; and perhaps an 

unobserved common cause 

Associated after X manip. X causes Y; and perhaps an 

unobserved common cause 

Each one causes the other 

(feedback loop); and perhaps an 

unobserved common cause 



Figure 1: Causal Bayes Net for Parameter Estimation 
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Figure 1: Full One-Layer Causal Bayes Net for Parameter Estimation 
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Figure 3: Example of Manipulation Representation 

 

 


