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ABSTRACT

A pervasive feature of the sciences, particularly the applied sciences, is an

experimental focus on a few (often only one) possible causal connections. At the

same time, scientists often advance and apply relatively broad models that incorporate

many different causal mechanisms. We are naturally led to ask whether there are

normative rules for integrating multiple local experimental conclusions into models

covering many additional variables. In this paper, we provide a positive answer to this

question by developing several inference rules that use local causal models to

place constraints on the integrated model, given quite general assumptions. We also

demonstrate the practical value of these rules by applying them to a case study from

ecology.

1 Experimental scope in applied sciences
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3 A concrete example of the inference rules
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1 Experimental scope in applied sciences

Total photosynthetic material has increased globally in recent years (though

with local decreases), and one might naturally wonder why. In a recent paper

in Science, Nemani et al. ([2003]) focused on some of the potential causes of

global vegetation growth during the past 20 years. Their analysis focused on

only four variables: growing season average temperature, vapor pressure

deficit, solar radiation, and net primary production (photosynthetic mater-

ial). Their study considered only a limited variable set because of (a) the

global scale of their analysis, and (b) the relatively long study period

(18 years). Despite this limited scope (in terms of variables), their study

gives substantial support to the hypothesis that the first three variables are

causes of the last, and helps to clarify the functional form of those depend-

encies. At the same time, they explicitly note that there are many causally

relevant variables that were ignored in their study, such as vegetation
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decomposition rates and land-use changes during the past two decades. In

this case, other studies will be necessary to determine the influence of these

other variables; that is, the process of discovering the various causes of

vegetation growth is fragmented.

This kind of fragmentation—studying only a few variables at a time, even

though they may interact with other variables addressed in separate studies—

is typical of the applied sciences, though for different reasons in different

domains and experiments (e.g. technical versus financial versus ethical).

In the climate sciences, some experiments/observational studies specialize in

global heat and temperature, some in atmospheric phenomena, some in land

phenomena, some in ocean phenomena, some in general circulation models,

and so on. The social sciences are no different. Econometric models and

studies of the United States economy share some variables, but not others,

with econometric models of the United Kingdom. Datasets collected

about poverty, employment, and almost any other social issue, as well as

subsequent analyses of that data, typically share some variables but not

others. Medical data collections, and studies based on them, exhibit similar

fragmentation.

This patchwork character of applied science threatens its conclusions.

In most of the examples just mentioned, we cannot perform experiments

in which the hypothetical causes are deliberately randomized or otherwise

manipulated, and so must generate or estimate models1 based on both

our observations and background beliefs. But, of course, correlation is

not causation. If potentially relevant variables are knowingly omitted

from a study, then we seemingly cannot be confident that the associations

found among the variables that are considered are not due, wholly or in

part, to omitted variables. We are forced to ask: how, if at all, can such

fragments—these patches of perhaps tentative scientific results—be

joined together into coherent models in which we can have some

confidence? How, if at all, can multiple instances of local learning (i.e. an

experiment on a small set of variables) be fused together into a global

theory (i.e. a causal structure/set of interactions on a much larger set of

variables)?

For a possible response, we can look towards work over the past 20 years

by other philosophers of science, computer scientists, and statisticians to

develop a framework—causal Bayesian networks—for representing causal

hypotheses and extracting them from observational data and background

knowledge. This framework and the associated search procedures have slowly

1 No particular theoretical baggage is implied by the use of the word ‘model’. We will relatively

interchangeably use the terms ‘model’, ‘theory’, and ‘structure’. Nothing we say will depend on

the distinctions that are often drawn among these terms.
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gained increasing acceptance in statistics, and have produced results in many

sciences—both applied and ‘pure’.2 One might hope that this framework

would enable us to provide an informative, normative way of stitching

together the fragments of scientific knowledge in various applied sciences.3

Most of the remainder of this paper considers the following three, more

specific, questions:

1. Given a set of local, partially overlapping causal models, what

constraints—if any—can be placed on an integrated model of all of the

variables?

2. How can the introduction of background knowledge aid the construction

of this integrated structure?

3. Given a set of local, partially overlapping causal models, what series of

experiments will most efficiently determine the full, integrated causal

model (while still respecting limits on the types of experiments that we

can perform)?

Note that we restrict ourselves here to the normative dimension of this

problem, and leave aside the obvious descriptive analogues of these three

questions. We focus here on how applied scientists could stitch together the

fragments, not whether they actually do stitch in this manner. Also, there are

important interconnections among these questions: the second and third

questions are only interestingly novel if there is a positive answer to the

first question. If nothing can be learned about the integrated structure

from the local models, then the latter two questions reduce to the well-

studied problems of background knowledge incorporation and experiment

planning in a state of ignorance about the integrated model. Perhaps surpris-

ingly, it will turn out that we can provide partial positive, non-trivial answers

to all three of these questions.

Bovens and Hartmann ([2002]) focused on a related problem: how can we

fuse or unify the results of repeated measurements of one or more predictions

2 Some examples of successful application of the causal Bayes net framework: biology (Shipley

[2000]), economics (Bessler [2003]), educational research (Conati et al. [1997]), cognitive

psychology (Waldmann and Martignon [1998]; Steyvers et al. [2003]; Danks, Griffiths and

Tenenbaum [2003]), developmental psychology (Gopnik et al. [2004]), genetics (Smith et al.

[2002]; Danks et al. [2003]), mechanical engineering (Lerner et al. [2002]), medicine (Cooper et al.

[2000]), metaphysical accounts of causation (Woodward [2003]), mineral identification (Ramsey

et al. [2002]), neuroscience (Glymour [2002]), and space physics (Waldemark and Norqvist

[1999]).
3 The problem of inferring causal relations from statistical evidence—particularly within the

framework of causal Bayes nets—has been much discussed in recent philosophical literature

(see, e.g. McKim and Turner [1997]; Cartwright [1999]; Glymour [1999]). This paper will sidestep

that debate. Rather than focusing on the question of ‘what do we need to assume to infer

causation?’, we will attempt to answer the question of ‘what do we do with (local) causal models/

structures once we have them?’
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of a particular scientific hypothesis? That is, they provide an account of

hypothesis confirmation from multiple experiments (or repetitions of the

same experiment), under the assumption that our instruments are less than

completely reliable (even if only because of inherent noisiness). Their work

also used the framework of Bayesian networks, and can be viewed as a neces-

sary precursor to the results in this paper. The three questions above all

take for granted that some, perhaps quite minimal, causal information can

be learned from experimental results. Bovens and Hartmann’s ([2002])

work—among many interesting results—demonstrates how and when such

learning is possible with noisy, possibly quite unreliable, measurement

instruments.

In the next section of the paper, I provide (qualitative) inference rules for

fusing the various local causal models, and briefly discuss how those rules

provide partial answers to the second and third questions above. I then show

how these rules can be applied to a simplified, but concrete, example in

Section 3. The final section applies the inference rules to a particular case

study from ecology, and draws some broader conclusions about the proposed

partial solution to this problem of generating coherent global causal struc-

tures from disparate local causal models.

2 Fusing the results of experiments4

A completely standard rule of scientific inference is: ‘If we experimentally

change the state of X and Y does not change, then X does not cause Y’.

There are, of course, situations in which this rule might fail (e.g. Hesslow’s

[1976] example of birth control pills and thrombosis; see also Cartwright’s

[1989] discussion of this case), but we can give a relatively precise character-

ization of the situations in which the rule will fail; determining whether

this rule will yield correct information in a particular situation is itself a

testable scientific hypothesis. So, for example, if we want to know whether

running causes weight gain/loss, we could randomly assign people to either

run three miles a day or minimize their physical exertion. If the average

changes in weight in the two groups are not significantly different, then

we conclude that running unfortunately does not cause weight change

(unless one or more of the usual assumptions are violated, such as the

uniformity of the two populations, the absence of exactly offsetting causal

paths, etc.).

More typically, however, we are not interested simply in causation, but

more specifically direct causation (relative to a particular system of variables).

4 Although this section is written relatively informally, all of the results can be expressed precisely

in terms of causal Bayes nets (see Danks [2002], [2003] for the exact details).
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Intuitively, X directly causes Y relative to a set of variables when X exerts a

causal influence on Y that does not pass through any of the other variables in

the system. The previous inference rule draws no distinction between indirect

and direct causation. The more commonly used inference rule—which does

separate direct and indirect causation—is roughly: ‘If we experimentally

change X’s state, hold fixed (in some way) the other variables in the system,

and Y does not change, then X does not directly cause Y’. The exact nature of

the ‘holding fixed’ might vary across experiments: sometimes experimental

clamping can be performed, other times we match individuals between the

populations. And once again, we can quite precisely state the general assump-

tions that must hold for this inference rule to be asymptotically correct

(or more precisely, different versions of this rule for different methods of

‘holding fixed’). To continue our earlier example, we might (impractically)

try to control experimentally our subjects’ diets by forcing everyone in the

study to eat exactly the same food. Or we might ensure that every subject in

the running condition had a counterpart of the same weight in the sedentary

condition. If the weight changes are not significantly different in either of

these two cases, then we conclude that running is not a direct cause of weight

change relative to the studied system (running, weight change, and diet or

initial weight, respectively).

We can further extend the above inference principles from experimental

to observational data. That is, we can draw (partial) conclusions about the

absence of causal influence based on particular patterns of associations and

independencies. In particular, we (tentatively) conclude that X does not dir-

ectly cause Y when X and Y are independent conditional on (some subset of)

the other variables in the system. The existence of observational inference

rules is particularly important for many of the applied sciences, since experi-

mental manipulations are often impossible, whether for financial, technical,

or ethical reasons. The general assumptions required for the (asymptotic)

correctness of these observational inferences are stronger than those required

earlier, but they are again testable scientific hypotheses. So, in our toy

example, we could measure, e.g. the running habits, recent weight change,

and diet of many individuals in the population. Given some assumptions, if

running and weight change are independent conditional on every measured

value of diet, then we would conclude that running does not (directly) cause

weight change.

Of course, all of these inference rules are instances of ‘local’ learning, as

understood in the previous section: they all apply to cases in which we have

data over all of the variables being studied, and there is no integration to be

performed. But there is a thread running through these rules that we can

exploit when stitching together local models: absence of association (condi-

tional on some set) implies absence of (direct) causation (given some general,
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but testable, assumptions about the system).5 And notice that the conditional

independence of two variables does not change simply because we happen to

measure more variables. The independence might change if we include those

additional variables in the conditioning set, but independence conditional on

some—not all—variables is all the various inference principles require to con-

clude absence of causation. Thus, when we learn about absence of causation

in a local model, that absence will translate to the integrated global model.

We can state this inference rule for stitching together local models more

precisely as:

Inference rule 1:A local conclusion thatX does not directly causeY relative

to some system S holds relative to any supersystem S* (i.e. a system whose

variables are a superset of the variables in S).

To finish the above example using this inference rule, if we (locally) conclude

that running does not directly cause weight change relative to some system

(e.g. running, weight change, and diet), then this conclusion holds for all

super-systems of that one (e.g. if we measure metabolic rate in addition to

these other three variables). As a side note, it is important to emphasize that

‘inclusion of variables in a set’ refers only to which variables are measured,

and not which are assumed to be present (or absent), or which are

experimentally manipulated, or even which (if any) must be included in the

conditioning set for any independence test.6

For a more realistic example of this principle’s application, suppose coun-

terfactually that Nemani et al. ([2003]) had concluded that one of their vari-

ables (e.g. solar radiation) was not a (direct) cause of net primary production

because those two variables were (perhaps conditionally) uncorrelated during

the study period. In this case, the above inference rule would license us to

conclude that (given certain testable assumptions) solar radiation does not

directly cause net primary production in any model with additional variables

(e.g. one that incorporated the influence of wind, or recent changes in land

5 Technically minded readers might recognize this ‘common thread’ as essentially a colloquial

statement of statement of Spirtes et al.’s ([2000]). Faithfulness assumption (called Stability in

Pearl [2000]). However, since Faithfulness is actually one of the ‘precise general assumptions’

alluded to earlier, this might all appear disingenuous, since we seemingly ‘derive’ X from the

assumption that X. However, the initial discussion in this section should not be read as ‘proving’

that the common thread is true, but rather as trying to argue that it is ubiquitous in scientific

inference.
6 That being said, ‘inclusion of variables in a set’ does include reference to the observed values of

those variables. In particular, the statistical judgment that two variables are independent holds

only for the observed values of those variables. This condition becomes particularly important

when we have skewed datasets in which one or more variables cover only a small part of their

range (e.g. income and education values among people on welfare). The inference of lack of

causation between X and Y might not hold for a supersystem if X and Y also take on previously

unobserved values in the supersystem (e.g. income, education, and housing values—the super-

system—in the entire U.S., in which they will take on a larger range of values). Thanks to an

anonymous reviewer for emphasizing this point.
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use patterns). And so, as we try to stitch together the many ecological models

of vegetation growth that emerge from different experiments, we would have

a constraint on the possible (causal structure of the) full model.

This inference rule is interesting, since it shows that the problem of stitch-

ing together local knowledge is not hopeless: some local information is

reusable, even when we consider a larger model. However, this rule is—in a

sense—itself highly local, since it uses information about the absence of

causal connections from only one particular experiment. By assumption,

though, we have multiple local models, and so we are not restricted to just this

information. And we can place further constraints on the integrated model

when we simultaneously consider these multiple models. The inference rule

for these further constraints is best introduced through an illustrative example.

Suppose (local) experiments have yielded the following two causal struc-

tures: X ! A  Y, and A ! C  B, where ‘!’ means direct causation

(relative to the system of variables). That is, X and Y jointly cause A, but

are independent of each other (so there is no causal connection between them

by the earlier principles), and A and B jointly cause C, though they are also

independent of each other. Now consider what constraints can be placed

on the integrated model for all five variables. Specifically, consider variables

X and B. There are four possible causal connections between B and X:

(i) B causes X; (ii) X causes B; (iii) there is an unobserved common cause

of X and B; or (iv) there is no causal connection between them at all. Note

that these are not all mutually exclusive possibilities: conceivably, both X

causes B and there is an unobserved common cause of the two variables.

Now consider each of the first three possibilities. If B is a cause of X in the

integrated model, then B is a cause of A (though indirectly through a variable,

X, that was not measured in the second experiment). If B is a cause of A, then

B and A should be unconditionally associated. Alternately, if X is a cause of B

or there is an unobserved (in either experiment) common cause of X and B,

then B and A have an unobserved common cause in the second experiment,

which will induce an association between them (just as, e.g. barometer read-

ings and storms are correlated when we do not observe the air pressure).

However, since A and B are known to be unconditionally independent

(from the second experiment), none of these three possibilities can be actual.

Thus, the only remaining alternative is no direct causal connection at all

between X and B. An analogous argument holds for Y and B. Thus, by

simultaneously considering both local models, we can place two further con-

straints on the (causal structure of the) full model: there is no direct causal

connection between X and B, or between Y and B.

This result is, in some ways, quite astonishing. We have eliminated the

possibility of a causal connection between two variables (X and B, or Y

and B) without those two variables ever appearing in the same dataset or
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experiment. That is, we have no datapoints (experimental or observational)

with measurements for both X and B, or both Y and B, but we can still

determine that there cannot be a causal connection between them. One

might naturally have thought a priori that nothing could be learned about

possible causal connections between variables that are never jointly meas-

ured; that intuition turns out to be incorrect (given certain testable assump-

tions about the data and the generating process).7

This is an intriguing example, but not sufficient by itself to establish a

second general inference rule. To give the more general principle, we first

need a semi-technical definition. We define ‘X is a definite cause of Y’ iff

there is some (possibly empty) chain of intermediate variables Z1, . . . , Zn

such that X is a cause of Z1, Z1 is a cause of Z2, . . . , and Zn is a cause

of Y. Note that X, Y, and the Z’s need not all appear in the same local

model, but that this definition assumes the transitivity of causal relations.

The question of the transitivity of causation has been much-discussed in

the philosophical literature (e.g. Hitchcock [2001]), but I wish to sidestep

those debates here. Instead, I simply note that the successful application of

this rule depends upon transitivity. If transitivity always holds, then this rule

always works (given the other assumptions); if transitivity sometimes fails,

then the application of this rule will depend on case-by-case judgments, and

the general usefulness of the rule will depend on the empirical frequency of

non-transitive causal relations. Given this definition, we can give the follow-

ing inference rule:

Inference rule 2: Suppose there is no causal connection between X and Y in

some local model because X and Y are unconditionally independent. Then

there are no causal connections in the integrated model between X and the

definite causes of Y, or between Y and the definite causes of X.

This inference rule simply formalizes the arguments used for the previous

example: if there were some causal connection between X and a definite

cause of Y, then X and Y would be associated. They are unconditionally

independent, though, so there cannot be such a connection. Mutatis mutandis

for Y and a definite cause of X. In addition, we can generalize this rule to

situations in which the absence of a causal connection between X and Y is due

to a conditional independence. This generalization requires more technical

machinery, but the central intuition remains the same. Moreover, we can

again precisely state the conditions under which the generalized rule can

and cannot be applied. The application of the generalized inference rule is

complex, but feasible.

7 For technically minded readers, one must assume that the Markov and Faithfulness conditions

hold of the data/generating structure pair, and that there is some single generating structure

underlying the two local experiments.
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These two inference rules both focus on the absence of a causal connection

between two variables in the integrated model. Are we able to say anything at

all about when a causal connection must appear in the integrated model?

There are some situations in which a direct causal connection discovered

locally must continue to exist in the integrated model. For example, if

X ! Y is learned locally, and other local models tell us that there are no

other causal connections between X (or Y) and any other variable in the

integrated model, then X ! Y must appear in the integrated model. More

specifically, if X ! Y appears in some local model and there is no other

possible causal connection between X and Y through other variables in the

integrated model, then X! Y will be part of the integrated model. But in the

absence of substantial background knowledge, there is little reason to

think that these preconditions will hold with any regularity in practice. We

might learn that X causes Y in some local model (whether from experimental

or observational data), but that information will typically not enable us

to determine whether X is a direct or indirect cause of Y in the integrated

model.

Throughout this section, I have avoided talking about functional forms or

model parameterizations. For example, I have nowhere assumed that con-

tinuous variables are connected (causally) by linear equations. If we can make

those types of assumptions, then we can typically learn more about the integ-

rated structure. For example, suppose three different experiments yield

models with the following ‘causal’ connections: ExposureToInfluenza !
InfectionWithInfluenza, and InfectionWithInfluenza ! BreathingProblems,

and ExposureToInfluenza ! BreathingProblems. If we know the (uncondi-

tional) correlations among these three variables and assume linearity, then

although we never directly measure all three variables, we can determine

whether ExposureToInfluenza and BreathingProblems are independent condi-

tional on InfectionWithInfluenza. If they are conditionally independent, then

the apparent causal connection should be eliminated from the integrated

model, even though neither of the above inference rules would license such

a removal. I will not further explore inference rules for special functional

forms in this paper.

Throughout the above discussion of inference rules, I have mentioned

repeatedly that these results all hold only given certain testable assumptions.

Interestingly, these inference rules themselves provide a novel means of test-

ing whether these assumptions hold for a particular problem or domain. In

theory, the application of these inference rules could yield constraints or

predictions that conflict with our background knowledge, or possibly even

prior experiments. Since the inference rules (or rather, precise formal state-

ments of them) hold whenever the assumptions do, failure of an inference

rule (i.e. production of a false constraint) implies failure of one of the
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assumptions. I will briefly return to this feature of these results during the

application to a case study in Section 4.

I conclude this section by returning to the second and third questions posed

in Section 1: how can background knowledge be incorporated, and how can

we choose the best sequence of experiments (or heuristically, just the best next

experiment) to perform? I have focused throughout this paper on learning

causal connections and mechanisms, and so prior knowledge or beliefs could

take a variety of forms, including knowledge about the temporal relations

among variables, about the definite presence or absence of a particular causal

connection, and about the functional form that some connection must have

(if it exists). All of these different types of background (i.e. context-

dependent) knowledge can be incorporated at two different points in the

integration process. First, we can use that background knowledge in whatever

method we use for learning local causal models, thereby potentially altering

the various models to be integrated. Second, we could use the background

knowledge after the application of the inference rules, as a ‘post-processor’

that excludes some hypotheses from consideration. In this latter mode, the

background knowledge could clearly be applied interactively with the infer-

ence rules, as implications of the rules might suggest additional (tentative)

‘background beliefs’ that might further constrain the application of the

inference rules.

For the experiment choice problem, a simple naı̈ve algorithm would first

enumerate the possible sequences of experiments as well as the possible integ-

ration outcomes for each stage in each sequence. We could then apply the

above inference rules to each extended experiment-outcome sequence to

determine the stage at which we would settle on a unique integrated structure.

If we then had some probability distribution over the experiment-outcome

sequences, we could determine which experiment sequence has the earliest

expected stage at which it settles on a unique model. Of course, this strategy

is hopeless from a computational point of view, because it requires both the

enumeration of a highly exponential number of sequences and a specification

of the probability distribution over experiment-outcome sequences. We can

avoid the computational explosion by using some heuristic strategy, but that

strategy will not be guaranteed to find the optimal experiment sequence.

Unfortunately, we must—in this domain, as in many others—make a decision

between asymptotic correctness and computational tractability, and the

balancing point for that trade-off depends on the particular domain and

scientists. Thankfully, many of these issues have already been explored

from a formal perspective in the machine learning community as so-called

‘active learning’ (see, e.g. Tong and Koller [2001]). That being said, an

exploration of the value of different heuristic strategies would constitute a

paper in its own right, and so I do not explore it further here.
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3 A concrete example of the inference rules

To demonstrate in more detail how these inference rules might work, I first

present a simplified, but more realistic, example in which a substantial por-

tion of the global structure can be reconstructed from only three instances of

local learning. Suppose we are trying to learn a causal model for blood oxy-

gen saturation and ventilators in an intensive care unit. And further suppose

that we obtain the three local models given in Figure 1.8

We now need to determine what constraints exist on the integrated struc-

ture involving the nine variables in these three models. The first inference rule

described in the previous section, ‘Absence of causal connection in a local

model ) absence of causal connection in the integrated model’, applies to

eight pairs of variables (e.g. between MinVent and DiscVent), and so we can

exclude from the integrated model any causal connections between the vari-

ables in those pairs. (A full list of excluded causal connections is given in

footnote 9.)

Now consider applying the second inference rule. One consequence of the

third local model is that TubeMeas and Intub must have been unconditionally

independent in the data. Therefore, there cannot be a causal connection

between Intub (or TubeMeas) and the definite parents of TubeMeas (or

Intub). Therefore, there cannot be a causal connection in the integrated

model between Intub and either MinVent or DiscVent. It is easy to see in

this example why there could not be such connections: if there were, for

example, an unobserved common cause of Intub and MinVent, then Intub

and TubeMeas would have been unconditionally correlated (since the first

local model tells us that MinVent is a cause of TubeMeas), and so the third

local model would have been different. Also, although the exact details of the

MinVent DiscVent

PulmVent

TubeMeas

PulmVent TubeMeas Intub

PAOxygen

AlvVent

ArtCO2CO2Exp

AlvVent

Figure 1. Three local models.

8 Descriptions of the nine variables: MinVent: Minute ventilation measured at the ventilator;

DiscVent: Disconnected ventilation tube; TubeMeas: Ventilation measured at endotracheal

tube; PulmVent: Pulmonary ventilation; AlvVent: Alveolar ventilation; ArtCO2: Arterial carbon

dioxide content; CO2Exp: Carbon dioxide content of expired gas; Intub: Intubation status;

PAOxygen: Pulmonary artery oxygen saturation.
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generalized version of the second inference rule (i.e. the modification to

exploit conditional independencies) were left out of the previous section, we

can apply the generalized version in this case to exclude more causal connec-

tions from the integrated model. For example, PulmVent and ArtCO2 are (by

the second model) independent conditional on just AlvVent. If there were

a causal connection between ArtCO2 and TubeMeas (one of PulmVent’s

causes), then there would be an unobserved common cause of PulmVent

and ArtCO2 relative to the second model, contradicting the observed condi-

tional independence. Therefore, there cannot be any causal connection

between ArtCO2 and TubeMeas in the integrated model. Similar applications

of the generalized inference rule yield constraints excluding causal connec-

tions between four other variable pairs in the integrated model.

In all, there are 15 constraints on the integrated model: that is, there are 15

(unordered) pairs of variables such that there cannot be a causal connection

between the two variables in the integrated model.9 There are 36 unordered

pairs of variables that might have some causal connection between them in

the integrated model, and so the constraints yielded by these inference rules

apply to 42% of the variable pairs in the integrated model. The integrated

model is significantly constrained by only three four-variable models. Of

course, these results also mean that there are 21 variable pairs about which

we must remain agnostic. For example, no constraint is placed on a potential

causal connection between Intub and PulmVent. There is no evidence that

suggests such a connection exists, but also no evidence against it. We also

have TubeMeas ! PulmVent, PulmVent ! AlvVent, and TubeMeas ! Alv-

Vent, and so might suspect that TubeMeas’s influence on AlvVent is entirely

through PulmVent. That is, we might think that PulmVent screens off Tube-

Meas’s influence on AlvVent. Unfortunately, we cannot determine whether

that suspicion is correct based on the local models provided (though we

potentially could if we had knowledge of the functional forms).

The example in this section was specifically chosen because we actually

have the full integrated model. Beinlich et al. ([1989]) developed a model of

the causal interactions among a wide range of variables (37, in all) in an

intensive care unit, and the above three local models represent submodels

of the full structure. The actual integrated model for these nine variables is

shown in Figure 2.

As the full structure shows, all of the constraints are correct; the inference

rules worked. Consider also the two variable pairs about which we were

9 In the interest of completeness, the 15 pairs are: (CO2Exp, AlvVent); (MinVent, PulmVent);

(MinVent, DiscVent); (MinVent, ArtCO2); (MinVent, Intub); (MinVent, PAOxygen);

(TubeMeas, ArtCO2); (TubeMeas, Intub); (TubeMeas, PAOxygen); (PulmVent, DiscVent);

(PulmVent, ArtCO2); (DiscVent, ArtCO2); (DiscVent, Intub); (DiscVent, PAOxygen); (Intub,

PAOxygen).
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explicitly agnostic: (Intub, PulmVent) and (TubeMeas, AlvVent). For the

former pair, there turned out to be a (direct) causal connection in the integ-

rated model; for the latter pair, there was not a (direct) causal connection.

Our agnosticism turned out to be well-founded.

4 Application to a case study

The strongest test of the applicability of these rules emerges from applying

them to a case study in which we do not actually know the full integrated

structure. In addition, we want to try to apply the rules to an actual scientific

domain and experiments. That being said, bear in mind that we focus

throughout this section on what could—normatively—be concluded from a

particular study, not on whether scientists actually use these rules in scientific

practice. Tuyttens et al. ([1999]) performed an observational study in England

to determine which factors causally influence the trappability of badgers

(defined as the percentage of individuals trapped during some extended trap-

ping event). Badgers are thought to help spread bovine tuberculosis in

England, and so learning the causes of trappability could lead to major shifts

in public policy. As a first step in determining the causes of trappability,

Tuyttens et al. ([1999]) trapped badgers in three different areas of England,

measured potentially causally relevant variables for each trapped badger,

and also estimated several population-level variables for each of the three

different populations studied.

The principal result of interest here is that badger social group size is

(unconditionally) uncorrelated with trappability. Larger groups are no

more or less trappable than smaller groups. Thus, if we were to show that

the required assumptions hold (a task I do not undertake here), then both

inference rules would apply. This independence (i.e. absence of causal con-

nection) fits the precondition of the first rule, and so implies that there cannot

be a direct causal connection between trappability and social group size in

any integrated model that contains these variables. The second inference

rule also applies, in that no integrated model can contain a direct causal

MinVent

DiscVent

PulmVentTubeMeas AlvVent

Intub

PAOxygen

CO2Exp ArtCO2

Figure 2. Actual ICU model.
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connection between trappability (or social group size) and any definite causes

of social group size (or trappability) in some other local model. The causes

of trappability are unknown (which provided the initial motivation for the

Tuyttens et al. [1999] paper), but one potential cause of social group size is the

average biomass of earthworms, a major food source for badgers (Johnson

et al. [2001]). If earthworm biomass actually is a definite cause of social group

size (no definite conclusion is drawn in Johnson et al. [2001]), then the second

inference rule implies that there cannot be any direct causal connection

between earthworm biomass and trappability in any integrated causal models

(given certain testable assumptions).

This implication of the inference rules is perhaps surprising, since a plaus-

ible causal story is: ‘earthworm biomass is a cause of a badger’s hunger, and

hunger is a cause of trappability’. Thus, one might have thought a priori that

there could be a causal connection between earthworm biomass and trappab-

ility. In fact, the causal story just given might be true if one or more of the

testable assumptions alluded to earlier is false. Part of the burden of applying

these inference rules (and more generally, of doing causal inference) is deter-

mining whether the relevant assumptions hold. Alternately, it is possible that

the formal framework used to justify the above inference rules is itself not

appropriate for the studied variables or domain. And a third possibility is

simply that the above a priori causal story is wrong; perhaps the actual model

is: ‘hunger is a cause of trappability, but reduced earthworm biomass only

reduces the group size, rather than increasing an individual badger’s hunger’.

Or perhaps some other, as yet undetermined, integrated model governs all of

these variables.

This pair of articles (Tuyttens et al. [1999]; Johnson et al. [2001]) is some-

what unusual, since the inference rules essentially apply immediately to the

results in them. Many (arguably most) individual scientific articles focus

either on discovering single causal mechanisms, or on learning the functional

form for a particular known causal mechanism. Thus, the value of the infer-

ence rules will more frequently emerge when trying to integrate relatively

large sets of scientific results (i.e. articles), rather than when focusing on

some particular experiment. For example, we might have one scientific

paper demonstrating that X is a cause of Y, another showing that Y is a

cause of Z, a third showing that W is a cause of Z, and a fourth concluding

that there is no causal connection between Y and W. From these four differ-

ent experiments or papers, we can conclude that there are no causal connec-

tions between Y and W or between X and W in any integrated model, but no

more. The inference rules provide constraints and guidelines for the develop-

ment of an integrated model, but there will invariably be questions about the

integrated model not answered—because they are not, in fact, answerable—

by the information in the local models (e.g. does X directly cause Z?).

804 David Danks



I began this paper by arguing that the ultimate goals (and actual end-

products) of the various sciences—and particularly applied sciences—

include wide-ranging causal structures, but that many different considera-

tions lead us to experiment on only limited sets of variables. Clearly, system-

atic experimental exploration of all possible subsets of variables is hopelessly

impractical. This situation leads to questions about whether local models can

be integrated in a normative manner, or whether our global causal models

can only be coherent by heuristically piecing them together, perhaps by hand.

Perhaps surprisingly, there turn out to be inference rules that enable us to

place constraints on the integrated model, and those rules can exploit

information that is not contained in any single local model. Novel informa-

tion can emerge from the consideration of sets of local models, as demon-

strated by the two different examples. Further applications of these rules to

actual scientific practice must await a different paper.
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