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Abstract*

Current psychological theories of human causal learning and 
judgment focus primarily on long-run predictions: two by 
estimating parameters of a causal Bayes nets (though for different 
parameterizations), and a third through structural learning. This 
paper focuses on people’s short-run behavior by examining 
dynamical versions of these three theories, and comparing their 
predictions to a real-world dataset. 

1  In troduct ion  

Currently active quantitative models of human causal judgment for single (and 
sometimes multiple) causes include conditional ∆P [8], power PC [1], and Bayesian 
network structure learning [4], [9]. All of these theories have some normative 
justification, and all can be understood rationally in terms of learning causal Bayes 
nets. The first two theories assume a parameterization for a Bayes net, and then 
perform maximum likelihood parameter estimation. Each has been the target of 
numerous psychological studies (both confirming and disconfirming) over the past 
ten years. The third theory uses a Bayesian structural score, representing the log 
likelihood ratio in favor of the existence of a connection between the potential cause 
and effect pair. Recent work found that this structural score gave a generally good 
account, and fit data that could be fit by neither of the other two models [9]. 

To date, all of these models have addressed only the static case, in which judgments 
are made after observing all of the data (either sequentially or in summary format). 
Learning in the real world, however, also involves dynamic tasks, in which 
judgments are made after each trial (or small number). Experiments on dynamic 
tasks, and theories that model human behavior in them, have received surprisingly 
little attention in the psychological community. In this paper, we explore dynamical 
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variants of each of the above learning models, and compare their results to a real 
data set (from [7]). We focus only on the case of one potential cause, due to space 
and theoretical constraints, and a lack of experimental data for the multivariate case. 

2  Real-Wor ld  Data  

In the experiment on which we focus in this paper [7], people’s stepwise acquisition 
curves were measured by asking people to determine whether camouflage makes a 
tank more or less likely to be destroyed. Subjects observed a sequence of cases in 
which the tank was either camouflaged or not, and destroyed or not. They were 
asked after every five cases to judge the causal strength of the camouflage on a  
[–100, +100] scale, where –100 and +100 respectively correspond to the potential 
cause always preventing or producing the effect. The learning curves, constructed 
from average strength ratings, were: 
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Figure 1: Example of learning curves 

In this paper, we focus on qualitative features of the learning curves. These learning 
curves can be divided on the basis of the actual contingencies in the experimental 
condition. There were two contingent conditions: a positive condition in which  
P(E | C) = .75 (the probability of the effect given the cause) and P(E | ¬C) = .25, 
and a negative condition where the opposite was true. There were also two non-
contingent conditions, one in which P(E) = .75 and one in which P(E) = .25, 
irrespective of the presence or absence of the causal variable. We refer to the former 
non-contingent condition as having a high P(E), and the latter as having a low P(E). 
There are two salient, qualitative features of the acquisition curves: 

1. For contingent cases, the strength rating does not immediately reach the 
final judgment, but rather converges to it slowly; and 

2. For non-contingent cases, there is an initial non-zero strength rating when 
the probability of the effect, P(E), is high, followed by convergence to zero. 

3  Parameter  Es t imat ion  Theor ie s  

3 .1  Condi t iona l  ∆P  

The conditional ∆P theory predicts that the causal strength rating for a particular 
factor will be (proportional to) the conditional contrast for that factor [5], [8]. The 



 

general form of the conditional contrast for a particular potential cause is given by: 
∆PC.{X} = P(E | C & X) – P(E | ¬C & X), where X ranges over the possible states of 
the other potential causes. So, for example, if we have two potential causes, C1 and 
C2, then there are two conditional contrasts for C1: ∆PC1.{C2} = P(E | C1 & C2) –  
P(E | ¬C1 & C2) and ∆PC1.{¬C2} = P(E | C1 & ¬C2) – P(E | ¬C1 & ¬C2). Depending 
on the probability distribution, some conditional contrasts for a potential cause may 
be undefined, and the defined contrasts for a particular variable may not agree. The 
conditional ∆P theory only makes predictions about a potential cause when the 
underlying probability distribution is “well-behaved”: at least one of the conditional 
contrasts for the factor is defined, and all of the defined conditional contrasts for the 
factor are equal. For a single cause-effect relationship, calculation of the ∆P value is 
a maximum likelihood parameter estimator assuming that the cause and the 
background combine linearly to predict the effect [9].  

Any long-run learning model can model sequential data by being applied to all of 
the data observed up to a particular point. That is, after observing n datapoints, one 
simply applies the model, regardless of whether n is “the long-run.” The behavior of 
such a strategy for the conditional ∆P theory is shown in Figure 2 (a), and clearly 
fails to model accurately the above on-line learning curves. There is no gradual 
convergence to asymptote in the contingent cases, nor is there differential behavior 
in the non-contingent cases. 

An alternative dynamical model is the Rescorla-Wagner model [6], which has 
essentially the same form as the well-known delta rule used for training simple 
neural networks. The R-W model has been shown to converge to the conditional ∆P 
value in exactly the situations in which the ∆P theory makes a prediction [2]. The 
R-W model follows a similar statistical logic as the ∆P theory: ∆P gives the 
maximum likelihood estimates in closed-form, and the R-W model essentially 
implements gradient ascent on the log-likelihood surface, as the delta rule has been 
shown to do. The R-W model produces learning curves that qualitatively fit the 
learning curves in Figure 1, but suffers from other serious flaws. For example, 
suppose a subject is presented with trials of A, C, and E, followed by trials with only 
A and E. In such a task, called backwards blocking, the R-W model predicts that C 
should be viewed as moderately causal, but human subjects rate C as non-causal.  

In the augmented R-W model [10] causal strength estimates (denoted by Vi, and 
assumed to start at zero) change after each observed case. Assuming that δ(X) = 1 if 
X occurs on a particular trial, and 0 otherwise, then strength estimates change by the 
following equation:  
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αi0 and αi1 are rate parameters (saliences) applied when Ci is present and absent, 
respectively, and β0 and β1 are the rate parameters when E is present and absent, 
respectively. By updating the causal strengths of absent potential causes, this model 
is able to explain many of the phenomena that escape the normal R-W model, such 
as backwards blocking. 

Although the augmented R-W model does not always have the same asymptotic 
behavior as the regular R-W model, it does have the same asymptotic behavior in 
exactly those situations in which the conditional ∆P theory makes a prediction 
(under typical assumptions: αi0 = –αi1, β0 = β1, and λ = 1) [2]. To determine whether 
the augmented R-W model also captures the qualitative features of people’s 
dynamic learning, we performed a simulation in which 1000 simulated individuals 
were shown randomly ordered cases that matched the probability distributions used 



 

in [7]. The model parameter values were λ = 1.0, α00 = 0.4, α10 = 0.7, α11 = -0.2, β0 
= β1 = 0.5, with two learned parameters: V0 for the always present background cause 
C0, and V1 for the potential cause C1. The mean values of V1, multiplied by 100 to 
match scale with Figure 1, are shown in Figure 2 (b). 
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Figure 2. Modeling results. (a) is the maximum-likelihood estimate of ∆P , (b) is the 
augmented R-W model, (c) is the maximum-likelihood estimate of causal power, (d) 
is the analogue of augmented R-W model for causal power, (e) shows the Bayesian 
strength estimate with a uniform prior on all parameters, and (f) does likewise with 

a beta(1,5) prior on V0. The line-markers follow the conventions of Figure 1. 

 

Variations in λ only change the response scale. Higher values of α00 (the salience of 
the background) shift downward all early values of the learning curves, but do not 
affect the asymptotic values. The initial non-zero values for the non-contingent 
cases is proportional in size to (α10 + α11), and so if the absence of the cause is more 
salient than the presence, the initial non-zero value will actually be negative. 
Raising the β values increases the speed of convergence to asymptote, and the 
absolute values of the contingent asymptotes decrease in proportion to (β0 – β1). 

For the chosen parameter values, the learning curves for the contingent cases both 
gradually curve towards an asymptote, and in the non-contingent, high P(E) case, 
there is an initial non-zero rating. Despite this qualitative fit and its computational 
simplicity, the augmented R-W model does not have a strong rational motivation. Its 
only rational justification is that it is a consistent estimator of ∆P: in the limit of 
infinite data, it converges to ∆P under the same circumstances that the regular (and 
well-motivated) R-W model does. But it does not seem to have any of the other 
properties of a good statistical estimator: it is not unbiased, nor does it seem to be a 
maximum likelihood or gradient-ascent-on-log-likelihood algorithm (indeed, 
sometimes it appears to descend in likelihood). This raises the question of whether 
there might be an alternative dynamical model of causal learning that produces the 
appropriate learning curves but is also a principled, rational statistical estimator. 



 

3 .2  Power  PC 

In Cheng’s power PC theory [1], causal strength estimates are predicted to be 
(proportional to) perceived causal power: the (unobserved) probability that the 
potential cause, in the absence of all other causes, will produce the effect. Although 
causal power cannot be directly observed, it can be estimated from observed 
statistics given some assumptions. The power PC theory predicts that, when the 
assumptions are believed to be satisfied, causal power for (potentially) generative or 
preventive causes will be estimated by the following equations: 
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Because the power PC theory focuses on the long-run, one can easily determine 
which equation to use: simply wait until asymptote, determine ∆PC, and then divide 
by the appropriate factor. Similar equations can also be given for interactive causes. 
Note that although the preventive causal power equation yields a positive number, 
we should expect people to report a negative rating for preventive causes.  

As with the ∆P theory, the power PC theory can, in the case of a single cause-effect 
pair, also be seen as a maximum likelihood estimator for the strength parameter of a 
causal Bayes net, though one with a different parameterization than for conditional 
∆P. Generative causes and the background interact to produce the effect as though 
they were a noisy-OR gate. Preventive causes combine with them as a noisy-AND-
NOT gate. Therefore, if the Gi’s are generative causes and Ij’s are preventive causes, 
the theory predicts: . ( ) ( ) ( )⎥

⎦

⎤
⎢
⎣

⎡
−−−= ∏∏

i
i

j
j GIEP 111

As for conditional ∆P, simply applying the power PC equations to the sufficient 
statistics for observed sequential data does not produce appropriate learning curves. 
There is no gradual convergence in the contingent cases, and there is no initial 
difference in the non-contingent cases. This behavior is shown in Figure 2 (c).  

Instead, we suggest using an analogue of the augmented R-W model, which uses the 
above noisy-OR/AND-NOT prediction instead of the linear prediction implicit in 
the augmented R-W model. Specifically, we define the following algorithm (with all 
parameters as defined before), using the notational device that the Ck’s are 
preventive and the Cj’s are generative:  

( ) ( ) ( ) ( )
( )

( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−−=∆ ∏∏

== 11

111
jk

i
V

j
V

kECii VVEV
δδ

δδ λδβα  

Unlike the R-W and augmented R-W models, there is no known characterization of 
the long-run behavior of this iterative algorithm. However, we can readily determine 
(using the equilibrium technique of [2]) the asymptotic Vi values for one potential 
cause (and a single, always present, generative background cause). If we make the 
same simplifying assumptions as in Section 3.1, then this algorithm asymptotically 
computes the causal power for C, regardless of whether C is generative or 
preventive. We conjecture that this algorithm also computes the causal power for 
multiple potential causes.  

This iterative algorithm can only be applied if one knows whether each potential 
cause is potentially generative or preventive. Furthermore, we cannot determine 
directionality by the strategy of the power PC theory, as we do not necessarily have 
the correct ∆P sign during the short run. However, changing the classification of Ci 
from generative to preventive (or vice versa) requires only removing from (adding 



 

to) the estimate (i) the Vi term; and (ii) all terms in which Vi was the only generative 
factor. Hence, we conjecture that this algorithm can be augmented to account for 
reclassification of potential causes after learning has begun. 

To simulate this dynamical version of the power PC theory, we used the same setup 
as in Section 3.1 (and multiplied preventive causal power ratings by –1 to properly 
scale them). The parameters for this run were: λ = 1.0, α00 = 0.1, α10 = 0.5,  
α11 = –0.4, β0 = β1 = 0.9, and the results are shown in Figure 2 (d). Parameter 
variations have the same effects as for the augmented R-W model, except that 
increasing α00 reduces the size of the initial non-zero values in the non-contingent 
conditions (instead of all conditions), and absolute values of the asymptotes in all 
conditions are shifted by an amount proportional to (β0 – β1). 

This dynamical theory produces the right sort of learning curves for these parameter 
values, and is also a consistent estimator (converging to the power PC estimate in 
the limit of infinite data). But as with the augmented R-W model, there is no 
rational motivation for choosing this dynamic estimator: it is not unbiased, nor 
maximum likelihood, nor an implementation of gradient ascent in log-likelihood. 
The theory’s main (and arguably only) advantage over the augmented R-W model is 
that it converges to a quantity that is more typically what subjects estimate in long-
run experiments. But it is still not what we desire from a principled dynamic model.  

4  Bayes ian  s truc ture  l earn ing  

The learning algorithms considered thus far are based upon the idea that human 
causal judgments reflect the estimated value of a strength parameter in a particular 
(assumed) causal structure. Simple maximum likelihood estimation of these strength 
parameters does not capture the trends in the data, and so we have considered 
estimation algorithms that do not have a strong rational justification. We are thus 
led to the question of whether human learning curves can be accounted for by a 
rational process. In this section, we argue that the key to forming a rational, 
statistical explanation of people’s dynamical behavior is to take structural 
uncertainty into account when forming parameter estimates. 

Complete specification of the structure of a Bayesian network includes both the 
underlying graph and choice of parameterization. For example, in the present task 
there are three possible relationships between a potential cause C1 and an effect E: 
generative (h+), preventive (h–), or non-existent (h0). These three possibilities can 
respectively be represented by a graph with a noisy-OR parameterization, one with a 
noisy-AND-NOT parameterization, and one with no edge between the potential 
cause and the effect. Each possibility is illustrated schematically in Figure 3.  
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for the observed data [9]. That work showed that the likelihood of finding a causal 
relationship rose with the base rate P(E) in non-contingent cases, suggesting that 
structural decisions are a relevant part of the present data. However, the rating scale 
of the current task seems to encourage strength judgments rather than purely 
structural decisions, because it is anchored at the endpoints by two qualitatively 
different causal strengths (strong generative, strong preventive). As a result, 
subjects’ causal judgments appear to converge to causal power. 

Real causal learning tasks often involve uncertainty about both structure and 
parameters. Thus, even when a task demands ratings of causal strength, the 
structural uncertainty should still be taken into account; we do this by considering a 
hierarchy of causal models. The first level of this hierarchy involves structural 
uncertainty, giving equal probability to the relationship between the variables being 
generative, preventive, or non-existent. As mentioned in previous sections, the 
parameterizations associated with the first two models lead to a maximum 
likelihood estimate of causal power. The second level of the hierarchy addresses 
uncertainty over the parameters. With a constant background and a single cause, 
there are two parameters for the noisy-OR and the noisy-AND-NOT models, V0 and 
V1. If the cause and effect are unconnected, then only V0 is required. Uncertainty in 
all parameters can be expressed with distributions on the unit interval. 

Using this set of models, we can obtain a strength rating by taking the expectation 
of the strength parameter Vi associated with a causal variable over the posterior 
distribution on that parameter induced by the data. This expectation is taken over 
both structure and parameters, allowing both factors to influence the result. In the 
two-variable case, we can write this as 
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where H = {h+, h0, h–}. The effective value of the strength parameter is 0 in the 
model where there is no relationship between cause and effect, and should be 
negative for preventive causes. We thus have: 

<V1> =  P(h+)µ+ – P(h–)µ–

where µ+, µ– are the posterior means of V1 under h+ and h– respectively.  

While this theory is appealing from a rational and statistical point of view, it has 
computational drawbacks. All four terms in the above expression are quite 
computationally intensive to compute, and require an amount of information that 
increases exponentially with the number of causes. Furthermore, the number of 
different hypotheses we must consider grows exponentially with the number of 
potential causes, limiting its applicability for multivariate cases. 

We applied this model to the data of [7], using a uniform prior over models, and also 
over parameters. The results, averaged across 200 random orderings of trials, are 
shown in Figure 2 (e). The predictions are somewhat symmetric with respect to 
positive and negative contingencies and high and low P(E). This symmetry is a 
consequence of choosing a uniform (i.e., strongly uninformative) prior for the 
parameters. If we instead take a uniform prior on V1 and a beta(1,5) prior on V0, 
consistent with a prior belief that effects occur only rarely without an observed 
cause and similar to starting with zero weights in the algorithms presented above, 
we obtain the results shown in Figure 2 (f). In both cases, the curvature of the 
learning curves is a consequence of structural uncertainty, and the asymptotic values 
reflect the strength of causal relationships. In the contingent cases, the probability 
distribution over structures rapidly transfers all of its mass to the correct hypothesis, 
and the result asymptotes at the posterior mean of V1 in that model, which will be 



 

very close to causal power. The initial non-zero ratings in the non-contingent cases 
result from h+ giving a slightly better account of the data than h–, essentially due to 
the non-uniform prior on V0. 

This structural account is only one means of understanding the rational basis for 
these learning curves. Dayan and Kakade [3] provide a statistical theory of classical 
conditioning based on Bayesian estimation of the parameters in a linear model 
similar to that underlying ∆P. Their theory accounts for phenomena that the 
classical R-W theory does not, such as backwards blocking. They also give a neural 
network learning model that approximates the Bayesian estimate, and that closely 
resembles the augmented R-W model considered here. Their network model can 
also produce the learning curves discussed in this paper. However, because it is 
based on a linear model of causal interaction, it is not a good candidate for modeling 
human causal judgments, which across various studies of asymptotic behavior seem 
to be more closely approximated by parameter estimates in noisy logic gates, as 
instantiated in the power PC model [1] and our Bayesian model. 

5  Conc lus ion  

In this paper, we have outlined a range of dynamical models, from computationally 
simple ones (such as simply applying conditional ∆P to the observed datapoints) to 
rationally grounded ones (such as Bayesian structure/parameter estimation). 
Moreover, there seems to be a tension in this domain in trying to develop a model 
that is easily implemented in an individual and scales well with additional variables, 
and one that has a rational statistical basis. Part of our effort here has been aimed at 
providing a set of models that seem to equally well explain human behavior, but that 
have different virtues besides their fit with the data. Human causal learning might 
not scale up well, or it might not be rational; further discrimination among these 
possible theories awaits additional data about causal learning curves. 
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