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Abstract 
Causal inference from observed cases is a central cognitive 
challenge. There has been some evidence for individual 
differences in causal learning strategies, but prior work has not 
examined fine-grained sequences of judgments. In this paper, 
we report a large-scale model-fitting effort to determine the 
best-fitting causal inference models for individual participants. 
We fit a range of different model-types against multiple 
judgment sequences from each participant, thereby enabling 
comparisons of learning strategy both between- and within-
participant. The model-fitting effort revealed some diversity in 
learning strategy along both dimensions, though individuals 
did exhibit some stability. Overall, however, the model fits 
were worse than expected, particularly when compared to the 
high accuracy reported for many of the models when used to 
predict group-level causal judgments. These results thus call 
into question whether these models might accurately describe 
the average behavior without accurately describing many (or 
any) individual’s behaviors. 
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Introduction 
Causal knowledge is central to many different cognitive 
activities. We use our understanding of the causal structure 
of the world to guide prediction, explanation, reasoning, 
decision, and control. Moreover, for many of these processes, 
causal knowledge—rather than simple observation—is 
necessary to avoid making numerous and/or significant 
errors. If I observe that someone has a symptom, then I can 
predict that they have a disease. But knowledge of the 
symptom-disease association is relatively uninformative 
about potential treatments, possible explanations of those 
observations, or many other important cognitive tasks. 

There has unsurprisingly been a large body of cognitive 
science research on various aspects of causal cognition, 
including perception (e.g., Michotte, 1946/1963; Scholl & 
Tremoulet, 2000), inference (e.g., Cheng, 1997; Griffiths & 
Tenenbaum, 2005; Holyoak & Cheng, 2011; Lu, Rojas, 
Beckers, & Yuille, 2016), and reasoning (e.g., Rehder & 
Burnett, 2005; Rottman & Hastie, 2013). In the present paper, 
we focus on how people learn the strength of a potential cause 

to bring about an effect. For example, what is the strength of 
this plant to produce a rash in particular individuals? 

Much research on this question has focused on group-level 
patterns in causal cognition (though see, e.g., Steyvers, 
Tenenbaum, Wagenmakers, & Blum, 2003). For example, 
experiments and models of causal learning from sequences of 
cases usually aim to measure, predict, and explain the mean 
judgment across the full set of participants. This emphasis on 
group-level patterns has some natural intuitive appeal: if 
causal cognition really is central to successful functioning, 
then it should arguably not exhibit significant variation 
between people. And if the processes underlying causal 
cognition are (approximately) species-universal, then mean 
judgments or learning curves will remove the inevitable 
experimental noise to reveal those processes. 

While this argument has some intuitive appeal, a closer 
examination of the experimental data suggests that the 
conclusion does not hold. For example, Figure 1 shows 
learning curves for twelve (not randomly selected) individual 
participants in Danks & Schwartz (2006).  

 

 
 

Figure 1: Example learning trajectories 
 

These participants were all in the same experimental 
condition, and so all saw exactly the same sequence of cases. 
During that sequence, they were each asked after each case 
to judge the causal strength of a potential cause, given 



everything that they had observed to that point. But although 
the participants in Figure 1 saw identical sequences of cases, 
their responses are quite different, not only in the particular 
numeric ratings, but also in the shapes of their learning 
curves. These participants certainly do not appear to be 
learning the causal strength using the same processes, though 
that appearance is potentially misleading. 

There have been limited previous efforts to examine 
individual differences in causal learning. Steyvers, et al. 
(2003) developed a Bayesian model of causal structure 
learning from a sequence of cases, including parameters for 
choice optimality and individual memory. They then showed 
that participants naturally divided into several clusters, where 
they required all participants within a cluster to have the same 
parameter values. Danks & Schwartz (2005, 2006) examined 
individual differences in responses to surprising data or 
changes in the underlying causal structure, though principally 
through descriptive analyses of observed changes, rather than 
examination of the underlying cognitive processes. Their 
results suggest that people might be learning in qualitatively 
different ways, but do not resolve which of the many 
proposed theories are best for different individuals. 
Relatedly, a meta-analysis by Perales & Shanks (2007) 
suggested that no single model provides a best fit for average 
responses, which is exactly what would be expected if there 
are significant individual differences in learning strategy (see 
also Hattori & Oaksford, 2007; Lee & Lovibond, 2020). 

In this paper, we directly examine individual differences in 
cognitive processes for causal learning. Many individual 
difference analyses (in other areas of cognitive science) posit 
a single process with one or more free parameters (e.g., 
working memory capacity). In contrast, we build upon the 
diverse set of potential theories previously proposed in the 
literature, and also ones developed for this paper. We fit those 
models to the individual-level data in both of Danks & 
Schwartz (2005, 2006). In particular, we consider both the 
best-fitting model for each individual participant in each 
condition, and also the best-fitting single model for each 
participant across all conditions. These different analyses 
enable us to explore both between- and within-individual 
differences in causal learning strategy. The next Section 
explains the theories that we considered. We then describe 
the specific experimental data and model-fitting procedure 
that we used, before turning to the analyses and remaining 
open questions. 

Competing Models 
This analysis considered fifteen causal learning models: 
seven models from the existing literature; seven novel models 
developed specifically for this analysis; and a “null model” 
(not further discussed) that simply predicted zero for every 
causal judgment (“Zero Correlation”). The seven previously-
proposed causal learning models were selected based on three 
criteria. First, the selected models were all computationally 
fully-specified, so quantitative causal strength predictions 
could readily be generated. Second, the models all provide 
predictions on a case-by-case basis, rather than being limited 

to only long-run predictions. Third, the selected models have 
each been developed and tested in multiple experimental 
papers. Importantly, the existing models were originally 
proposed with differing interpretations; some were intended 
as mechanistic models, while others were presented at the 
computational level (Marr, 1982) that does not carry 
mechanistic commitments. For the purposes of this analysis, 
we remain agnostic about the commitments of any particular 
theory, and consider them as computational proposals.  

In this section, we provide brief explanations for all 
fourteen non-null models, including references to full 
explanations of existing models. Unless otherwise noted, 
those seven models were implemented exactly as proposed in 
the original papers. Throughout, we use C to denote potential 
causes, and E to denote the effect. We will be analyzing data 
from experiments with only one potential cause, and so we 
will largely focus on that special case. 

Existing Models 
(1) Augmented Rescorla-Wagner model: A prime example 
of associationist learning theory, the Rescorla-Wagner model 
posits that individuals learn causal relationships via an error 
correction process (Rescorla & Wagner, 1972). For the 
present case of only one potential cause, the learned strength 
of C at time t is given by VCt. There is also assumed to be an 
always-present background cause with strength VBt. These 
strengths are used to predict the next case, and then are 
updated based on the discrepancy between one’s prediction 
and the observation. More precisely, VXt+1 = VXt + ΔVXt where: 

ΔVXt = αXδ(X) βδ(E) (λδ(E) – ∑all causes Y δ(Y)VYt) 
δ(X) is an indicator function for whether X is present; αC0/1, 
αB0/1, and β0/1 are learning rate parameters for the absence or 
presence of C, B, and E, respectively; and λ denotes the 
salience of E. All parameters are assumed to be determined 
by features of the stimuli, but are free parameters in our 
model-fitting exercise. 
 
(2) Probabilistic Contrast: The probabilistic contrast model 
argues that an individual’s causal strength judgments are 
given by a standard measure of association (Cheng & Novick, 
1992), and also describes the long-run equilibria of the 
(augmented) Rescorla-Wagner model (Danks, 2003). There 
are both unconditional and conditional probabilistic contrasts 
when there are multiple potential causes. For the present one-
cause case, these quantities collapse together and we have: 

ΔP = P(E | C) – P(E | ¬C) 
There are no free parameters for probabilistic contrast. 
 
(3) Power PC: The power PC or causal power theory 
assumes that individuals behave as if relationships between 
causes and effects cannot be directly observed, but rather 
must be inferred from the observable data (Cheng, 1997). The 
original theory provided only long-run or asymptotic 
predictions. In the present analysis, we use a dynamical 
version of the power PC theory (i.e., the equilibria of the 
dynamical version are the same as the long-run power PC 
predictions) that provides case-by-case predictions (Danks, 



Griffiths, & Tenenbaum, 2003). For single-cause situations, 
the simplified update equations are: 

If VXt ≥ 0: ΔVXt =  
αXδ(X) βδ(E) (λδ(E) – (VBt + δ(C)VCt - VBtδ(C)VCt)) 

 
If VXt < 0: ΔVt =  

αXδ(X) βδ(E) (λδ(E) – VBt(1 – δ(C)VCt)) 
 
(4) Proportion of Confirming Instances (pCI): White’s 
(2003a, 2003b) pCI model posits that individuals track the 
evidence that logically confirms vs. disconfirms the 
hypothesis that C causes E. Cases in which C and E match 
(i.e., both occur or both fail to occur) provide confirmation of 
that hypothesis; cases in which they differ disconfirm that 
hypothesis. The pCI theory holds that causal judgments are 
given by the difference in total probability between these 
groups of evidence:  

pCI = [P(C&E) + P(¬C&¬E)] – [P(C&¬E) + P(¬C&E)] 
 
(5) Belief Adjustment Model: A generalization of the pCI 
theory holds that individuals only update their beliefs when 
asked to make a new judgment, and they do so by error-
correcting (in terms of pCI) since their last judgment (Catena, 
Maldonado, & Candido, 1998). More precisely, suppose that 
J1, …, Jn denote the causal judgments made by the learner, 
and let pCI(k, k+1) denote the pCI for all cases between Jk 
and Jk+1. If γ is a learning rate parameter, then we update on 
each new judgment as: 

Jn+1 = Jn + γ(pCI(n, n+1) – Jn)  
For the experiments analyzed in this paper, participants gave 
explicit judgments after every trial, so the update equation is 
well-defined for all individuals. 

 
(6) Causal Support: The causal support model (Griffiths & 
Tenenbaum, 2005) postulates that causal inference involves 
weighing the evidence one has in favor of various possible 
causal graphs. Given only one potential cause (with an 
always-present background cause), there are two potential 
graphs: G1 = {C → E ← B}; and G2 = {C   E ← B}. Causal 
support is then defined as: 

Causal support = log( P(D | G1) / P(D | G2) ) 
To convert this quantity into the [-1, 1] interval, we transform 
causal support through a sigmoid function (with free 
parameters α, β to control the shape), and make preventive 
causes negative. 
 
(7) Sequential Bayesian Theory: Standard Bayesian 
theories are order-invariant with regards to the evidence: they 
predict the same response regardless of the order in which the 
data are perceived. In order to better account for a variety of 
experimental order effects, a modified sequential Bayesian 
update procedure was developed and applied to similar sorts 
of data as we consider here (Lu, et al., 2016). Broadly, the 
model involves a two-step process: (1) at time t, the learner 
generates an expected distribution for the causal weights for 
the next trial; (2) given the observed Dt+1, a correction step 
uses Bayes rule to update the prediction distribution in light 

of the observed data. Mathematically, if wt denotes the causal 
strengths/weights at time t and M denotes the causal 
generative model that the learner assumes, then we update as: 

Step (1): P(wt+1 | Dt, M) = ∫ dwt P(wt+1 | wt) P(wt | Dt, M) 
Step (2): P(wt+1 | Dt+1, M) =  

P(Dt+1 | wt+1, M)P(wt+1 | Dt, M) / P(Dt+1 | Dt, M) 

Novel Models 
The previous seven existing models represent a wide range of 
approaches to the cognitive task of causal inference. 
Nonetheless, we developed seven additional models by 
drawing on inspiration from analogous theories and ideas 
from other domains of cognitive science, particularly about 
the ways that resource limitations in attention and/or memory 
can yield heuristic learning methods that nonetheless perform 
relatively well. 
 
(8) Bayesian Correlation Optimization: A straightforward 
causal inference strategy is simply to compute the correlation 
coefficient between C and E (using Bayes Theorem to 
provide regularization). Specifically, we treat C and E as 
binary (Bernoulli) random variables. After each case, we 
compute the correlation coefficient for the sequence of sums 
of C and E with highest posterior probability.  
 
(9) Moving k-Window: The moving k-window model posits 
that individuals do not perform inference on the entire 
sequence of cases, but only on the most recent k cases. This 
type of input restriction could, in theory, be used with any of 
the other models, though it would not substantively change 
predictions of the dynamical models. We focused on a 
version that implements pCI over the past k cases for two 
reasons. First, the Belief Adjustment Model already 
incorporates similar ideas about memory bounds. Second, 
that theory is computationally quite simple which intuitively 
coheres with imposition of a memory constraint. More 
specifically, the causal judgment at t is given by:  

VCt = pCI(t – k, t) 
where pCI(i, j) denotes pCI computed over cases i through j. 
For purposes of model fitting, we considered k ∈ [1,10] 
 
(10) Win-Stay, Lose-Shift: The win-stay, lose-shift model 
postulates that individuals increase their judgment of the 
causal strength between C and E if the most recent case fits 
with their current belief about the direction of the causal 
relation (i.e., if they see a “win”). If the most recent case 
diverges from their current judgment (i.e., a “loss”), then they 
switch their judgment from generative to preventive (or vice 
versa). The basic idea of Win-Stay, Lose-Shift has found 
support in other experiments (Bonawitz, Denison, Gopnik, & 
Griffiths, 2014). We adapt the idea to causal strength learning 
using four conditional update steps: 
• If VCt ≥ 0 and δ(C) = δ(E): VCt+1 = VCt + (1 – VCt)/2 
• If VCt ≥ 0 and δ(C) ≠ δ(E): VCt+1 = -0.5 
• If VCt < 0 and δ(C) = δ(E): VCt+1 = 0.5 
• If VCt < 0 and δ(C) ≠ δ(E): VCt+1 = VCt – (1 + VCt)/2 
 



(11) Rescorla-Wagner with exponential decay: One 
potential shortcoming of the Rescorla-Wagner and 
(dynamical) power PC models is that they only stabilize on a 
particular long-run value in special contexts. In most settings, 
they continue to vary around their equilibrium values without 
ever converging (Danks, 2003), in contrast with observed 
human behavior. We thus considered a generalized version of 
Rescorla-Wagner in which the learning rate exponentially 
decays towards zero to ensure convergence. Mathematically, 
we multiply the ΔVXt terms by μ = e-λt, where λ is a free 
parameter that controls the speed at which the learner 
converges on a stable judgment. This model thus adds one 
free parameter to the unmodified Rescorla-Wagner model. 
 
(12) Power PC with exponential decay: We similarly 
modified the dynamical power PC theory by multiplying the 
ΔVXt terms by μ = e-λt to ensure converge on a stable judgment 
as the number of cases increases.  
 
(13) Rescorla-Wagner with stability of beliefs: The 
previous two models use a relatively blunt modification to 
ensure stabilization, as they assume that the learning rate 
converges to zero independently of the learner’s beliefs. An 
alternative approach would be to base the learning rate on 
(the inverse of) the stability of the learner’s recent judgments. 
That is, if the learner has (or has not) significantly changed 
her beliefs after recent evidence, then her learning rate should 
be relatively large (or small). Similar computational ideas are 
employed in many machine learning algorithms to determine 
when learning has largely stopped or otherwise adapt the 
learning rate(s). Let σ equal the average change in causal 
strength predictions over both C and B in the last k cases. We 
then multiply the ΔVXt terms by μ = max(γσ, 1/√t), where γ is 
a rescaling parameter to ensure large σ values do not lead to 
abnormally large changes in strength judgment (and the 
second term in the max() function ensures that the learner 
does not converge too fast). Note that, in contrast with the 
previous two models, this model will not necessarily 
converge on a stable judgment if the learning environment is 
sufficiently non-stationary. 
 
(14) Power PC with stability of belief: Similarly, we 
modified the dynamical power PC model by multiplying 
those ΔVXt terms by μ = max(γσ, 1/√t).  

Evaluating the Models 
We fit data from two experiments, each with multiple 
conditions, that were first reported in Danks & Schwartz 
(2005, 2006). In both experiments, participants saw a 
sequence of binary cause and effect cases (using a cover story 
involving plants and skin rashes). After each case, 
participants were asked to estimate the strength of the cause-
effect relationship on a [-100, +100] scale. Crucially, within 
each sequence of cases, the causal relationship (if any) 
changed to the opposite valence halfway through the 
sequence (without any notice to the participant). These 
sequences were non-stationary: all had the same overall 

statistics with P(E | C) = P(E | ¬C) = P(C) = 0.5, but most 
half-sequences had significant C-E correlations. They also 
present particularly challenging data for the various models, 
as participants’ causal strength beliefs may exhibit significant 
variability over the course of a sequence. (Interestingly, no 
participants in either experiment reported conscious 
awareness of the changes in causal strength nor the non-
stationarity, though a few reported that the sequences seemed 
a bit “odd.”) 

In Danks & Schwartz (2005), participants saw six 
sequences with 8 (twice), 16, 32, 48, and 80 cases. Each 
sequence had (i) strong positive correlation in the first half 
and strong negative in the second half; (ii) the opposite 
structure; or (iii) no correlation throughout the whole 
sequence. Sequence-type was counterbalanced within-
participant but across lengths; for each participant, there are 
judgment curves for six different conditions. This dataset 
contains 51 participants. In Danks & Schwartz (2006), all 
participants saw the same five 40-case sequences, one with 
zero correlation and four with {weak correlation, strong 
correlation} × {positive correlation first, negative correlation 
first}. Hence, there are five different conditions for each 
participant. This dataset contains 40 participants. The 
original experiments found only limited order effects in terms 
of average final ratings; the mean strength ratings largely 
converged back to zero in each condition (though as shown 
in Figure 1, there was substantial variability along the way). 

To fit specific parameterized models to participant data, we 
first generated model predictions for each possible condition 
by varying model parameters in a grid structure (i.e., all 
possible ways of varying parameter values across fixed 
ranges in fixed steps). Our models were relatively simple in 
number and range of parameters, so there was no need to use 
more sophisticated parameter estimation methods. We then 
determined, for each participant in each condition, the 
parameterized model with the lowest sum of squared error 
(SSE) for the actual participant judgments. We also 
determined the parameterized model that best fit (i.e., 
minimized SSE) each participant’s judgments across all five 
or six conditions. This latter analysis enables us to assess 
whether participants seemed to use a stable learning strategy 
across multiple conditions of a single experiment. 

One significant concern about our use of SSE is that it does 
not correct for the number of parameters in each model, in 
contrast with other model selection measures that penalize 
models with more free parameters (e.g., AIC, BIC). For many 
of our models, however, it is not clear exactly how to count 
the number of parameters. For example, the parameter values 
in the augmented Rescorla-Wagner model are typically 
thought to constrain one another in substantive ways (e.g., the 
learning rate for absent cues should be smaller than for 
present cues), and so we cannot simply use the number of 
named parameters in a straightforward way. In light of this 
complexity, we opted for the admittedly blunter measure of 
SSE, with the recognition that more complex models will 
likely fare better. 



Individual Differences Analysis 
The most basic level of analysis is simply which model fit the 
participant-level data best; see Figure 2 for that result, where 
we exclude models that fit less than 5% of the conditions. For 
both datasets, variants on the associationist models—either 
Rescorla-Wagner or dynamical power PC—dominated the 
model-fitting competition. Participant-conditions were 
largely best fit by some kind of error-correction procedure, 
coupled with some modification to help produce belief 
convergence.  

 

 
 

Figure 2: Distribution of best-fitting models 
 

However, this apparent uniformity masks some significant 
within-participant diversity. A simple measure of the stability 
of a participant’s strategy is the number of different model-
types that were the best fits across the five (for 2005 data) or 
six (for 2006 data) conditions. For this analysis, we ignore 
the actual parameter values and focus solely on the model-
type. Table 1 gives the percentages of participants who had 
the given number of different model-types across their 
conditions. 
 

Table 1: Distribution of distinct model-types. 
 

# of model-
types 

% of 2005  
participants 

% of 2006 
participants 

1 3.9 10.0 
2 21.6 25.0 
3 52.9 57.5 
4 15.7 7.5 
5 5.9 0.0 
6 0.0  

 
The within-participant diversity is limited: no participants 

(in either experiment) had different best-fitting model-types 
for every condition in that experiment. Every participant had 
at least two conditions for which the same model-type 
provided the best fit. At the same time, relatively few 
participants (3.9% in the 2005 data; 10.0% in the 2006 data) 
had the same best-fitting model-type for every condition in 
their experiment. Based on the by-condition analysis, most 
participants appeared to use a mix of model-types in their 
causal learning. 

A natural question is whether there is any pattern to the 
distributions of model-types. Figures 3 and 4 show the 

model-type distributions by trial length (2005 data) and by 
sequence type (2006 data). These Figures reveal that the 
Sequential Bayesian Theory performs better on shorter 
sequences (2005), and on unbiased sequences (2006). The 
latter finding is unsurprising, given that the order-invariance 
of “normal” Bayesian models. Moreover, Power PC-based 
methods do better for more “extremal” conditions, either 
longer sequences or stronger causes. 

 

 
 

Figure 3: Best-fitting models by trial length  (2005) 
 

 
 

Figure 4: Best-fitting models by sequence type (2006) 
 

Of course, “best-fitting” does not mean “good-fitting”; the 
best model of a participant’s judgments might actually be a 
very poor model. We say that a model is “reasonable” if the 
average error per judgment/datapoint is less than five (since 
judgments were on a [-100, +100] scale). This measure 
(rather than, say, total error) allows comparison of model 
performance across sequences of different lengths. 
Qualitatively similar results were obtained for different 
thresholds; in particular, allowing slightly larger average 
errors to count as “reasonable” did not substantively improve 
matters. Having said that, one concern about this criterion for 
‘reasonable’ is that it focuses on pointwise errors, rather than 
overall patterns. A model that predicts the exact learning 
trajectory offset by 10 would, on this criterion, count as 
unreasonable even though it perfectly captured the pattern. 

Table 2 shows the percentage of participant-conditions for 
which there was a reasonable model, separated by condition. 
There is a clear impact of condition: reasonable models were 
more likely to be found for shorter sequences and those with 



weaker (or zero) half-sequence correlations. More 
importantly, the overall low percentage of reasonable models 
suggests that many participants were learning differently than 
proposed by any of the models that we included. 
 

Table 2: Frequency of “reasonable” models. 
 

2005 2006 
condition % reasonable 

models 
condition % reasonable 

models 
8 46.1 Strong -/+ 20.0 
16 37.3 Strong +/- 32.5 
32 39.2 Unbiased 42.5 
48 31.3 Weak -/+ 40.0 
80 19.6 Weak +/- 55.0 

 
We can also focus on the single model that provided the 

best fit for each participant across all of their conditions. 
Figure 5 shows the best-fitting single model-type for each 
participant; again, modified associationist models perform 
the best, with power PC variants leading the way. 

 

 
 

Figure 5: Distribution of best-fitting single models 
  
The best-fitting single models can potentially help us to 

understand the amount of within-participant variation. In 
particular, the total SSE for the best-fitting single model must 
be greater-than-or-equal-to the sum of SSEs from each of the 
best-fitting per-condition models. We can thus divide each 
single-model SSE by the sum of per-condition model SSEs 
to gain an understanding of how much worse the single model 
performs (where a higher number suggests that this 
participant is more likely to be using different strategies 
across conditions). For the 2005 participants, the median ratio 
was 2.24; for the 2006 participants, the median ratio was 
3.78. That is, the single-model SSE was 2-3 times worse than 
the sum of the per-condition model SSEs. These results thus 
provide additional support for the earlier conclusion that most 
participants seem to be using more than one strategy across 
the various experimental conditions. 

Next Steps & Conclusions 
This analysis is a first step towards shedding new light on 
individual causal learning strategies. We found non-trivial 
diversity both within- and between-participants; few 
participants seem to be using the same learning strategy in all 

conditions, and no model-type was found to be universal. 
Nonetheless, certain model-types were disproportionately 
represented at both levels of analysis. In particular, error-
correction models (modified to increase stability of long-run 
judgments) consistently were the best-fitting models, 
whether on a per-condition or per-participant basis. These 
models were also the most complex, though, so future work 
should explore performance measures that penalize model 
complexity (though pace the earlier observations about the 
difficulty of counting parameters for some models). 

At the same time, the overall model fits were surprisingly 
poor. In almost every condition, fewer than half of the 
participants were best-fit by a model with an average per-
datapoint error less than five. These weak model fits are all 
the more surprising given the strong predictive performance 
previously reported for many of the existing models. 
Predictions of several models have been shown to be highly 
correlated (ρ > 0.9) with average participant judgments, and 
so we expected that they would perform well in our analyses.  

One possible explanation is that these models have largely 
been compared to people’s long-run, stable judgments after 
observing many cases. In contrast, our analysis tried to fit 
these models to case-by-case participant judgments in 
response to observations from non-stationary distributions. 
The experimental task may have prompted participants to use 
different types of learning strategies than are used in other 
types of experiments. Alternately, theories intended for long-
run predictions might not translate well to case-by-case 
judgments (though only models (2), (4), and (6) seem 
potentially restricted to long-run predictions). 

Another possible explanation is that theories of average 
causal learning behavior are simply not good theories of any 
particular individual’s causal learning behavior. As has been 
shown in other settings, the best model of average 
performance can be quite different from every individual’s 
personal best model (e.g., Brown & Heathcote, 2003; Myung, 
Kim, & Pitt, 2000). Causal learning may provide another 
such example. For either potential explanation, however, we 
must conduct significant further inquiry into the ways that 
individual people learn causal strengths in complex 
sequential environments. 
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