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1. Introduction 

A standard platitude about the function of causal knowledge and theories is that they are 

valuable because they support prediction, explanation, and control. Knowledge of predator-prey 

relations enables us to predict future animal populations, as well as design policies or 

interventions that help influence those populations. If we understand the underlying biochemical 

mechanisms of some disease, then we can predict who is at risk for it, explain why it produces 

particular symptoms, and develop interventions to try to reduce its prevalence or the symptom 

severity. Of course, there are many situations in which one has, for practical reasons, only some 

of these desiderata; for example, control might be infeasible for technical or ethical reasons. But 

these remain, for many researchers, the ideal for why causal knowledge is a valuable end of 

scientific inquiry, including biological inquiry. There are, however, certain types of systems—in 

particular, chaotic systems—in which it appears that these ends are unattainable, and these 

systems appear to be widespread in the biological domain, broadly construed (e.g., Benincà et 

al., 2008; Cushing, Costantino, Dennis, Desharnais, & Henson, 2003; Guastello, Koopmans, & 

Pincus, 2009; Hastings & Powell, 1991; Skarda & Freeman, 1987; Tsuda, 2001). In this paper, 



we will show why it is natural to think that causal models of chaotic systems cannot satisfy any 

of the three functions. But we will also show why this natural thought is wrong: we can have 

usable causal knowledge about even chaotic systems. Moreover, the ways in which we can have 

such knowledge lead us naturally to rethink a standard understanding of how causal learning and 

modeling proceed. In particular, just as we often must find the appropriate variables for a causal 

system, we also must determine the proper level or granularity of description for the dynamics of 

that system. 

Consider a paradigmatic case of learning and applying causal knowledge: a randomized 

clinical trial (RCT). Suppose that we have a biological theory T that implies that some drug D 

should be efficacious in treating symptoms S. We provide D to a randomly selected subset of our 

experimental participants, and either a placebo, some alternative treatment, or nothing at all to 

the other participants. We then measure S, as well as a number of other factors included in T 

(e.g., mediating processes), for an extended period of time. Using a range of statistical 

techniques, we can learn a variety of causal facts about the system (e.g., the efficacy of D to treat 

S; whether D functions as T predicts; etc.) by comparing the two groups. The causal facts 

represented by T (if T is correct) enable various predictions about, for example, likely future 

states of individuals if D were to be used or not (e.g., that giving D to a randomly chosen patient 

will make it less likely that the patient exhibits S in the future). And of course, RCTs are just one 

of the many ways in which we can come to have causal knowledge that can then be deployed for 

a variety of tasks. 

A potential pitfall lurks, however, when we confront chaotic systems. We describe the 

potential issue in more detail in Section 2, but sketch it here. There is disagreement about how 

exactly to define ‘chaos,’ but widespread agreement that chaotic systems generally exhibit 



sensitive dependence on initial conditions (SDIC): roughly, trajectories with initial states that are 

arbitrarily similar rapidly grow to have arbitrarily different final states. But this means that 

obvious methods for prediction and/or control will not work, as we (seemingly) cannot simply 

measure the initial state I, plug it into our theory T, and generate predictions or explanations of a 

final state F. Given that we measure I with finite precision and accuracy, the true initial state I* 

is likely to be slightly different. So, if the underlying causal structure exhibits SDIC, then 

predictions using I could be arbitrarily different from those using I*. And to the extent that 

explanation requires using a theory T to show that some state of affairs was likely or inevitable, 

chaotic phenomena will seem to evade explanation. Similar considerations apply to attempts to 

control a chaotic causal system: SDIC implies that our manipulations must be essentially perfect 

in order to lead to the desired end-state, but in practice, our manipulations are never perfect and 

inevitably have some error or noise in them. Thus, it seems that causal knowledge about chaotic 

systems is useless (since we cannot actually predict, explain, or control with it). Moreover, it is 

arguably even unlearnable, as all standard theory discovery and confirmation methods involve 

(perhaps implicitly) comparison between theoretical prediction and empirical truth.  

This line of thinking—causal knowledge is either useless or unattainable in chaotic 

systems—has a certain superficial plausibility.1 If right, it would bode ill for the scientific 

desideratum of causal knowledge more generally, given that chaotic phenomena are widespread 

in all sciences, including physics (Abarbanel, 1996), chemistry (Zhabotinsky, 1991), biology and 

neuroscience (May, 1974; Skarda & Freeman, 1987; Tsuda, 2001), psychology (Guastello et al., 

2009), ecology (Benincà et al., 2008; Cushing et al., 2003), and economics (Peters, 1994; Puu, 

2003). In this paper, though, we argue that this line of thinking is wrong. We can and do have 

                                                
1 Indeed, this paper was prompted by a comment made at an earlier workshop to the effect that “System S is chaotic, 
so there is no point in thinking about causal knowledge about it.”  



usable causal knowledge about chaotic systems in a wide range of domains, though we have to 

be clear about exactly what we have causal knowledge of. Most notably, issues about the proper 

level or granularity of description become particularly salient for chaotic systems. Such issues 

are not novel to chaotic systems, but as we will see, those systems illustrate a novel way in which 

the granularity of description matters. In particular, we must find the proper granularity to 

describe not just the system’s variables (or properties or features), but also the system’s 

dynamics. In the next section, we provide a more precise discussion of chaos theory in order to 

clearly show the potential pitfall. In Section 3, we show how to continue to “think causally” 

about chaotic systems by changing the level of description. Finally, in Section 4, we explore the 

broader question of how to determine, for any system (chaotic or non-chaotic), the “right” 

granularity of description for the system’s dynamics. 

 

2. Why chaos might pose a problem 

One of the first uses of the term ‘chaos’ (in Li & Yorke, 1975) was intended to describe the 

seemingly random behavior witnessed in some dynamical systems. Chaotic systems are particularly 

interesting, however, precisely because they are not random, but only appear that way (in some 

sense). A wide variety of definitions have been proposed for chaos, many of which try to capture the 

appropriate sense of “apparent randomness” in terms of information theory, or predictability, or 

some other notion (Bernardo, Frigg, & Kronz, 2006; Ford, Mantica, & Ristow, 1991; Frigg, 

2006; Smith, 1998; Werndl, 2009). Thankfully, we do not need to adopt a precise definition of 

chaos, but can rather focus on the more specific feature that leads to the appearance of randomness: 

sensitive dependence on initial conditions (SDIC). 



As a running example throughout this section, we will focus on the logistic equation, which can 

be used to model various population dynamics, including resource-constrained population change 

and a certain type of predator-prey interaction (May, 1974).2 Let xt denote the population in an area 

at time t, divided by the carrying capacity so xt is normalized to lie in the [0,1] interval. If R encodes 

the growth rate, then the update equation is: xt+1 = R(1 – xt)xt. The (normalized) population size at 

the next time step is thus a complex function of the interaction between population size and how 

close it is to the carrying capacity of the area. For R ≤ 4, xt will always stay in the [0,1] interval; if R 

> 4, then xt will eventually diverge to negative infinity. This is a very simple deterministic model, 

but nonetheless nicely illustrates SDIC. 

In general, the state of a system (or perhaps more properly, a mathematical model of a system) 

can be described by the current values of the relevant variables in the system (e.g., position, 

velocity, density, etc.). In the case of the logistic equation, the state is fully captured by the 

population size at that time.3 Since the system is dynamic, we can then talk about its trajectory: the 

sequence of system states x1, x2, x3, … that follow from some starting point.4 For the logistic 

equation, this is simply the sequence of population sizes over time. (Chaotic systems are standardly 

assumed to be deterministic,5 so there is a single unique trajectory for each initial condition.) The 

system follows this trajectory through state space: the multidimensional space of all possible system 

states. In the case of the logistic equation, the state space is 1-dimensional and consists of the [0,1] 

interval; in general, state spaces can be multidimensional and substantially more complicated.  

                                                
2 There are various alternative formulations of the logistic equation (e.g., having the growth rate vary as a function 
of xt or t itself), but we focus on the simplest version here. 
3 Since we are assuming that R is fixed for a particular system (and so cannot change), it is better understood as a 
parameter of the system, rather than a variable of it. 
4 For ease of exposition, we focus on discrete-time systems in which the dynamical equations for the system are 
stated in terms of discrete time steps (e.g., update equations). All of our general points transfer straightforwardly to 
continuous-time systems. 
5 There is a literature on stochastic chaos (e.g., Bjornstad & Grenfell, 2001; Kim & Reichl, 1996), but SDIC is the 
key for us, not determinism vs. stochasticity. 



In systems without SDIC, close initial conditions typically follow close trajectories: for 

example, the path of a ball released to roll down a ramp does not change much if we start the ball 1 

mm to the left. Similarly, if R = 3.3 in the logistic equation, then it does not exhibit SDIC; as shown 

in Figure 1, two close initial conditions—x1 = 0.37 (grey line) and x1* = 0.38 (dotted line)—stay 

arbitrarily close to one another: they converge so closely that the lines in Figure 1 essentially 

overlap. 

 

Figure 1: Logistic equation behavior for R = 3.3; grey line corresponds to x1 = 0.37 and dotted line 

to x1* = 0.38 

In contrast, a system exhibits SDIC just if two close-but-different initial conditions follow 

trajectories (through state space) that become arbitrarily different as time goes on. That is, even tiny 

differences can rapidly magnify to result in radically different trajectories. If R = 4 in the logistic 

equation, then it does exhibit SDIC. And as we show in Figure 2, the very same close initial 

conditions (x1 = 0.37 and x1* = 0.38) lead to radically different trajectories. 
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Figure 2: Logistic equation behavior for R = 4; grey line corresponds to x1 = 0.37 and dotted line to 

x1* = 0.38 

We can now pose the challenge for causal knowledge. As noted at the outset, one principal 

function of a causal theory T is to support prediction, explanation, and control. Control depends 

on our ability to use the causal theory T to generate complex hypothetical predictions about what 

would happen if we were to influence the system in some way. Similarly, the explanatory power 

of a theory T depends partly (though not wholly, as there are many aspects of explanation) on its 

ability to generate correct retrodictions—accounts of how the current state is implied by the truth 

of T and the earlier state(s) of the system. Thus, the latter two functions of causal theories 

depend in part on T’s predictive power, and so predictive power is plausibly a necessary 

condition for any particular theory T to satisfy these three functions of causal theories. As a 

result, predictive power provides a particularly powerful “lever” for the skeptic about causal 

knowledge for particular systems: if she can show that T has no (or insufficient) predictive 
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power, then she can show in one fell swoop that our knowledge about the relevant system cannot 

satisfy any of the core functions of causal knowledge.  

One way to think about prediction is that the theory T determines a conditional probability 

distribution over future states given the current state; that is, if mt denotes that the system is 

measured to be in state m at time t, then T’s predictive power is captured by the (possibly quite 

complicated) conditional probability distributions PT(mt+Δ | m*t) for all m*, Δ. Depending on the 

structure of T (e.g., if it is non-Markov or there is significant noise in our measurements), these 

conditional distributions could vary if we condition on two measurements, or three, or more. If T 

is a deterministic theory with perfect measurement, then PT will be a degenerate distribution 

giving probability one to a single state at each future time and zero to all others. If we conjoin T 

with an error distribution on our measurements, then these conditional distributions will be 

largely non-degenerate even if T is deterministic, since the conditional distributions are over 

measurements, not exact system states. For example, if we know that our measurements of 

population size are subject to some noise, then we can use the logistic equation plus that noise 

distribution to infer, for a given population measurement xt, the probability of various future 

measurements. 

The problem is that T arguably has little predictive power if it is a chaotic system. One way 

to think about SDIC is in terms of information: no matter how much information you have about 

the (sufficiently far back) past (i.e., no matter the precision or number of your measurements), 

you cannot improve your prediction of the current state (Werndl, 2009).6 Thinking in terms of 

probability distributions, this says that we have the same probability distribution for 

(measurements of) the system’s state, regardless of whether we condition on (measurements of) 

                                                
6 Alternately, “no matter how much information you have about the present, you cannot improve your predictions of 
the (sufficiently far ahead) future.” 



the system’s states in the sufficiently far past. That is, P(mt | m*t–Δ*, m**t–Δ**, …) ≈ P(mt), if the 

t–Δ*’s are sufficiently far back.7 Moreover, this is true regardless of the noise distribution on our 

measurements; all that is required is that our measurements are not absolutely perfect, which is 

guaranteed by the finite precision of our instruments. Our inevitably noisy knowledge of the 

initial state of a system rapidly becomes useless, and does not support any strong inferences 

about the future state. But this just means that T does no predictive work at all: if the conditional 

distributions (for sufficiently past knowledge) collapse to the unconditional (i.e., observational) 

distribution, then the causal theory T is not providing any (predictive) information about the 

world. We would make identical predictions regardless of whether we had T or not. Thus, it 

seems that causal theories about chaotic systems cannot satisfy the necessary condition—

predictive power—to fully satisfy any of their three core functions, and so such causal theories 

are arguably useless. 

The potential problem gets even worse if we start to think about how to discover or confirm a 

causal theory of a chaotic system, as essentially all accounts of confirmation or discovery are 

based on similarity (of some sort) between predictions and observations. We seemingly can 

neither confirm nor discover causal theories about chaotic systems, as argued by Koperski 

(1998). To see the importance of predictive power in accounts of confirmation, consider 

Bayesian accounts of confirmation (Earman, 1992; Fitelson, 1999). At a high level, Bayesian 

accounts say that data D should lead us to update our subjective probabilities over possible 

theories using Bayes’ Rule: P(T | D) = P(D | T) P(T) / P(D). Confirmation is (roughly) an 

increase in probability; more generally, most Bayesians hold that one ought to believe the most 

probable theory at each point in time (ceteris paribus). The potential problem arises when one 

                                                
7 The qualification of ‘sufficiently far back’ is important: although the trajectories diverge exponentially, they do not 
diverge instantaneously. 



tries to calculate the so-called “likelihood” term: P(D | T). This term denotes the probability of 

getting data like D if T were actually true, and so presupposes (for essentially all causal theories) 

that we can generate predictions. That is, we need to be able to determine how likely it is that we 

would see the actual observed system trajectory if T were true, but we just saw an argument that 

shows (or purports to show) that such predictions do not depend on T. Thus, the Bayesian 

seemingly has no “raw materials” with which to update her subjective probability distribution 

over causal theories; all theories predict the same thing (i.e., the unconditional data distribution). 

Similarly, essentially all theories of causal discovery (e.g., Chickering, 2002; Pearl, 2000; 

Spirtes, Glymour, & Scheines, 1993) depend on finding causal structures that could have 

produced data like the observations.8 All of these methods depend on having some way to 

generate predictions that can be checked against observations, but it seems that no causal theory 

of a chaotic system can have the required predictive power. As a result, causal discovery appears 

impossible for chaotic systems (though it may be possible for nonlinear systems more generally 

or when we measure fast enough, as in Chu & Glymour, 2008; Tillman, Gretton, & Spirtes, 

2010). In summary, the potential problem is not just that causal theories of chaotic systems seem 

to be useless; it is that we seemingly cannot even (reliably) discover or confirm them in the first 

place. 

 

                                                
8 One might think that constraint-based causal learning algorithms (e.g., Spirtes, et al., 1993) could provide a way 
around this challenge since they depend on independencies and associations between variables, rather than explicit 
predictions (or likelihood functions). The problem is that independence and association are fundamentally about 
information: X and Y are associated just when information about one changes the distribution over the other. But 
there is no such information between (sufficiently far apart in time) datapoints from a chaotic system: xt and xt+Δ will 
be independent (for all sufficiently large Δ) precisely because neither carries information about the other. 



3. How to (correctly) change the subject 

The discussion in the preceding section took for granted that the exact system trajectory—that 

is, the description of the system state over time—is the only data or prediction that matters. But we 

are all familiar with the fact that predictive power can emerge when one changes level or granularity 

of description: for example, it is nearly impossible to predict the exact pattern of cracks in a wine 

glass when it is struck with a hammer, but predicting at a coarser grain of description (e.g., will it 

break or not?) is substantially easier. More generally, it is often easier to predict general features of 

a system’s behavior (e.g., “S will mostly be in region R of state space”) than to predict the exact 

trajectory that the system will follow. We suggest that this observation is the key to understanding 

the way in which causal theories about chaotic systems are discoverable, confirmable, and usable: 

rather than trying to predict the precise long-run system trajectory, one should focus on predicting 

either coarser-grain or shorter-run features of the system. If we do this, then we find that we can do 

exactly the comparisons of theoretical predictions and empirical observations that are required for 

all of these purposes. That is, if the data and theoretical predictions about the system dynamics are 

described at the correct granularity, then we can defeat the skeptical objection and thereby 

(potentially9) learn and confirm causal theories of chaotic systems that can support prediction, 

explanation, and control. The core idea is that, as Smith (1998) noted, chaotic systems have 

micro-unpredictability, but also some macro-predictability. 

One way of coarse-graining the dynamics would be to describe the system as being in a 

particular region of the state space at a time, rather than at a particular point. That is, instead of 

focusing on the exact system state, we could try to predict only the rough location of the system 

in state space. In the case of the logistic equation, for example, we might characterize the system 

                                                
9 Predictive power is necessary for explanation and control, but of course not sufficient. Our focus is on defeating 
the skeptic’s attack on a critical feature of causal theories, which does much, but not all, of the work in showing that 
causal theories of chaotic systems can satisfy all of their functions. 



state (i.e., the normalized population) as being in either the [0.0, 0.5) or [0.5, 1.0] interval at time 

t, rather than in terms of its exact, real-valued state. There are many systems for which this is a 

natural way to coarse-grain: for example, one might not care about the exact location of a glass 

in a room, but only whether it is in the “on the table” or the “on the floor” spatial region. 

Importantly, we do not pursue this strategy for chaotic systems.10 Instead, we focus on the so-

called invariants of the motion: properties of particular trajectories that hold for (almost11) all initial 

conditions, and so can be said to hold of the system in general. SDIC is one example of such a 

property: properly speaking, it is a property of a trajectory, but one can prove that either (almost) all 

trajectories for a system will exhibit SDIC or (almost) none will. As a result, we can speak of the 

system as a whole exhibiting SDIC. More precisely, the extent of SDIC is captured quantitatively in 

the Lyapunov exponent of a trajectory. A zero or negative value for the Lyapunov exponent 

indicates no SDIC; the more positive the Lyapunov exponent, the more sensitivity there is to the 

initial condition.12 But (almost) all trajectories for a system will have the same Lyapunov exponent, 

and so we can justifiably talk about the Lyapunov exponent for the whole system. 

Another invariant of the motion is the dimension of the attractor. An attractor for a trajectory is 

a collection of points in phase space to which the trajectory converges as time goes on. In the case 

of the logistic equation with R = 3.3, for example, the attractor is an oscillation between a pair of 

points (see Figure 1). The attractors for different trajectories of a system can differ, but (almost) all 

share certain topological properties. In particular, the attractors will all have the same dimension, 

and so we can sensibly speak of the system’s attractor dimension. Non-chaotic systems have 

                                                
10 The problem is that the resulting “state space coarse-graining” would just be “for all future times, the system will 
be close to the attractor (in state space).” Attractors can be very large portions of state space, however, and so this 
coarse-graining is too coarse to be useful. 
11 Throughout this section, this qualification should be read in the measure-theoretic sense of “measure one” or 
“measure zero.” 
12 Trajectories actually have multiple Lyapunov exponents, one for each degree of freedom. However, SDIC arises if any 
Lyapunov exponents are positive, so we can focus simply on the largest one. 



attractor dimensions that are zero (corresponding to point attractors), one (ellipses), or some other 

whole number (tori). In contrast, systems exhibiting SDIC have strange attractors with fractional 

dimension. Strange attractors occupy some fractional part of the phase space, rather than lying on a 

simpler, lower-dimensional manifold.13 

Invariants of the motion characterize some generalizable and predictable high-level properties of 

a system’s dynamics. They can be calculated directly from a mathematical model. More 

surprisingly, and more importantly for theory confirmation, they can be estimated from real-world 

data. Suppose we have a large dataset of a population’s size over an extended period of time, and 

we have reason to believe that the system might be chaotic; for example, we might suspect that the 

logistic equation governs the population size changes. The first step in analyzing this dataset is to 

reconstruct (something isomorphic to) the system trajectory in phase space from our data. In the 

case of population size, this is straightforward since we have only one dimension. Even if we have a 

multidimensional system (e.g., over variables X, Y, Z), we can reconstruct the trajectory—more 

properly, a mathematical object with the same properties as the system trajectory—using only the 

time series data from one variable of that system (Packard, Crutchfield, Farmer, & Shaw, 1980). 

Specifically, we reconstruct the trajectory as a sequence of multidimensional points, where the 

values of each are those of a single variable at a series of points in time.14 In the X, Y, Z case, for 

example, although the “true” system trajectory points are the values of those different variables at 

each time t—(xt, yt, zt)—we can also represent that trajectory using the points (xt, xt+τ, xt+2τ) for a 

suitable time delay τ (Packard et al., 1980). Creating these new points is called “embedding the 

                                                
13 Depending on exact definitions, it seems that a system can have a strange attractor with no positive Lyapunov 
exponents (Grebogi, Ott, Pelikan, & Yorke, 1984), or a positive Lyapunov exponent with a non-strange attractor 
(Franaszek, 1987). We ignore that complication here. 
14 The dimension of the reconstructed point is the number of active degrees of freedom of the system. There are 
many techniques for discovering this number from our data, as well as learning the optimal time delay. While 
mathematically and scientifically interesting, the details of those techniques are tangential to our main point, so we 
omit them here. Abarbanel (1996) provides a useful overview of these techniques. 



time series” using a “delay-coordinate map,” or more simply, just “using a time delay embedding.” 

This procedure takes advantage of the so-called embedding theorem (Mañé, 1981; Takens, 1981), 

which informally says: for (almost) all functions that assign real values to points in phase space, a 

delay-coordinate map of that function is structurally equivalent15 to the original trajectory. 

The invariants of motion such as Lyapunov exponents and attractor dimension16 can be 

calculated from this reconstructed trajectory, and those are exactly the properties that we can 

attribute to the system as a whole. Thus, time delay embedding plus analysis of the reconstructed 

trajectory can give us substantial information about the dynamical properties of the system in a wide 

range of conditions. We have gone into some detail about how real-world data from a chaotic 

system can be analyzed because it is important that nothing is being swept under the rug here. All of 

these data analysis techniques are straightforward and mathematically defensible, and the net result 

is that we can empirically determine the invariants of motion for a given system S. Meanwhile, 

starting with a given causal theory T, there are numerous methods to determine these exact same 

invariant quantities for T, either analytically or through numerical simulation (see, e.g., Abarbanel, 

1996). Thus, we can actually carry out suitable comparisons of predictions and observations for 

chaotic systems, as long as we stay at the correct granularity of description of the system behavior 

(e.g., the Lyapunov exponent). We have lost some predictive power relative to a non-chaotic 

system, as we cannot accurately predict exact system states in the distant future, but contrary to the 

skeptical concern, we have not lost all predictive power. 

As an example of this process in action, consider the observational study of Benincà, et al. 

(2008). They measured the abundance of various microorganisms that are part of a common food 

                                                
15 That is, the reconstructed trajectory is a smooth one-to-one immersion to the original system trajectory. As such, all 
topological and differentiable properties of the original system trajectory are preserved in the reconstructed trajectory. 
16 There are other invariants of the motion (e.g., entropy), but we focus on these two, as they suffice to illustrate our 
points. 



web in (an isolated patch of) the Baltic Sea over more than six17 years. By isolating the water 

column from the broader Baltic Sea, they were able to ensure that there were relatively stable 

external conditions. Nonetheless, they observed significant variability in the abundances of the 

microorganisms; the absence of external sources of variability suggested that this variation was due 

to the various predator-prey relationships. Moreover, they found that the abundances were highly 

predictable in the short run of several days,18 but were essentially completely unpredictable at the 

15-30 day timescale. The data and background knowledge (e.g., Hastings & Powell, 1991; 

Huisman & Weissing, 1999) were both suggestive of chaotic phenomena, and so they investigated 

that possibility both empirically and theoretically. 

On the empirical side, Benincà, et al. (2008) applied the time delay embedding technique 

separately to the time series data for each species in order to reconstruct the attractor for each 

species’ abundance. These attractors were then used to calculate empirical estimates of the 

Lyapunov exponents for each of the abundances, all of which turned out to be significantly positive. 

The different Lyapunov exponents were also very similar in magnitude, suggesting that the food 

web is actually a single, connected chaotic system, rather than a collection of separable chaotic 

processes. Moreover, the empirically-derived Lyapunov exponents implied that the time series 

should be relatively unpredictable after 20-30 days, which fit with their earlier findings about 

predictability. On the theoretical side, Benincà, et al. (2008) developed a model of the food web 

based on a priori domain knowledge. They then derived the Lyapunov exponents for this theoretical 

model, and found that the theoretically-derived Lyapunov exponents were statistically 

indistinguishable from the empirically-derived ones (while still being significantly positive). From 

this fit (or rather, inability to reject a difference) between the empirical and theoretical Lyapunov 

                                                
17 They collected data over an eight-year span, but their data analysis only covered six years, four months. 
18 Specifically, they trained a neural net to predict species abundances several days in the future given the current 
species abundances. The resulting network predictions had R2 = 0.7 – 0.9. 



exponents, they concluded that we have reason to think that the proposed food web model captures 

something important about the causal structure of the interactions between the different species in 

this environment, even though those interactions produced chaotic trajectories. That is, they goth 

provided ample evidence that the observed system is chaotic, and also were able to generate model 

predictions and compare those to data, albeit at a coarser grain (i.e., Lyapunov exponents) than the 

raw time series data. 

More generally, we are not limited to prediction and confirmation of causal chaotic models, but 

can also think about controlling or manipulating chaotic systems.19 There is a large body of research 

on how to control chaotic systems (largely starting with Ott, Grebogi, & Yorke, 1990; Singer, 

Wang, & Bau, 1991; Vincent & Yu, 1991); much of this work has focused on shifting a chaotic 

system into a non-chaotic regime, usually for the purely practical reason that the precise system 

state (rather than coarse-grained properties) is easier to control in a non-chaotic system. A practical 

example of trying to move a system towards chaos arises in epilepsy treatment. There is evidence 

that epileptic seizures involve synchronized (i.e., regular and non-chaotic) cortical activity, 

including during the between-seizure periods (Gotman & Marciani, 1985). Thus, various chaos 

control techniques have been proposed as a way to keep the brain in its “normal” (i.e., chaotic) state 

so as to try to minimize the occurrence of epileptic seizures (Schiff et al., 1994; Slutzky, 

Cvitanovic, & Mogul, 2003). These techniques have been validated in the lab, though they have 

not been used in human patients for both practical and ethical reasons. Nonetheless, they show that 

it could potentially be both possible and valuable to push a system into a chaotic regime (or move it 

around within that regime). Moreover, this research focuses on controlling various coarse-grained 

system features, rather than controlling the exact system trajectory. Causal models of chaotic 

                                                
19 However, the appropriate model for answering control questions might be quite different than the appropriate one 
for prediction. We briefly revisit the possibility of multiple appropriate models at the end of the next section. Thanks 
to Frederick Eberhardt for emphasizing that point in this context. 



systems can thus support control, albeit of a coarser-grain feature than one might have initially 

thought. Of course, we have not shown that all causal models of chaotic systems support 

explanation and control; rather, we have shown that the predictive challenges inherent in a chaotic 

system do not pose a principled barrier to such capacities. 

 

4. Lessons for causation beyond chaos 

This general lesson—the stability and reliability of our causal knowledge and models can 

depend on how we understand the target phenomena—is not unique to chaotic systems. 

However, chaotic systems show us that the lesson applies in ways that have not previously been 

recognized. In general, previous work on finding the proper level or granularity of description for 

a causal system (Danks, 2015; Glymour, 2007; Ludwig, 2016; Woodward, 2016) has focused on 

finding the right characterization of the variables: which ways of carving up the space of 

possible states of some aggregate (e.g., a brain, a weather system, etc.) are defensible as 

“causally appropriate”? So, for example, although the motion of no single atom causes me to feel 

warm, the motion of the collective (in the air) does. No individual neuron causes my behavior, 

but a collection of neurons can be a perfectly sensible cause (Glymour, 2007). No particular 

ocean molecule causes the weather elsewhere, but the collective El Niño phenomenon leads to 

increased snowfall in the U.S. Rocky Mountains (Ropelewski & Halpert, 1996). Groups of 

people can be causes of something (say, global warming) where it is at best unclear whether any 

particular individual is causally responsible (Sinnott-Armstrong, 2005). In all of these cases (and 

many others, as argued by Strevens, 2003), we need to find the “right” variables (or properties or 

features or…) for understanding the causal structure of the world, where “rightness” might 

depend on many factors (Danks, 2015; Ludwig, 2016; Woodward, 2016). And the standard view 



in the causal modeling literature has been that, once we get the variables right, it is a relatively 

straightforward matter to get the dynamics. That is, if we can find the right variables, then 

learning the dynamics is “just” a matter of estimating the parameters (e.g., linear coefficients in a 

structural equation modeling). 

Chaotic systems show us that this view is much too simple: in many cases, we must also find 

the right granularity of description for the dynamics. Similar observations could perhaps be made 

about other dynamical systems, including non-stationary or highly non-linear time series, though 

we do not explore those cases here (see also Butterfield, 2012). To return to the earlier example, 

the challenge for Benincà, et al. (2008) was not to find the proper “causal variables”; the species 

abundances were clearly the correct way to think about the causal relata (and note that those 

variables are already coarse-grained characterizations of the aggregates composed of individuals 

of each species). The issue in their case was instead how to characterize the dynamics of the food 

web in a way that revealed a stable causal structure that could be used for prediction, 

explanation, and (perhaps someday) control. More generally, we suggest that most modeling of 

non-chaotic causal dynamics takes for granted that the goal is to write down the “update 

equations” (possibly non-linear) that express the way that the system state depends on the 

previous time step. And while this is potentially a goal even in chaotic systems if the 

measurements occur fast enough,20 it is clear that an understanding of the fine-grained dynamics 

will often not be possible. Instead, just as we can sensibly ask about the “proper” granularity for 

causal variables, we can ask about the “proper” granularity of causal dynamics. 

We propose a pragmatic (in the cost-benefit sense) criterion for selecting the granularity of 

description of the dynamics: namely, that the “right” granularity to describe the behavior of a 

                                                
20 Recall that Benincà, et al. had moderate short-run predictive success with their chaotic system. Of course, they 
achieved that by using a complex neural network predictor, so did not necessarily have simple update equations. 



system is any that has sufficient stability, reliability, and reproducibility that it can be used for 

prediction, explanation, and control. There are, of course, many ways to change the granularity 

of the dynamics; we focus on our proposed evaluation criterion, and leave aside the question of 

how algorithmically to find (one of) the best granularity change(s). In general, there will be a 

trade-off between granularity and stability: ceteris paribus, coarser-grained dynamics will be 

more stable. We propose that the “proper” level of granularity is the finest-grain that still 

supports the requisite predictive power. In this regard, our proposal is closely related to Franklin-

Hall’s (this volume) account of scientific explanations in terms of cost-benefit trade-offs. Our 

proposal is also complementary to Glymour’s (2007) suggestion that proposed variables for a 

causal model (in his case, features of aggregates) should be judged pragmatically by whether 

they yield stable and reliable causal models (see also Danks, 2015 and Woodward, 2016, though 

Ludwig, 2016 points towards other pragmatically relevant features). That is, these authors argue 

that variables are appropriate for causal models just when models built using such variables can 

be used reliably and repeatedly. We here contend that dynamical properties should be judged by 

the same criteria. 

One typical feature of cost-benefit trade-offs is that there may be multiple ways to maximize. 

In this context, there may be different granularities of description that provide an acceptable 

balance between “cost” of description and “benefit” of stability. A decision between different 

granularities will then depend on other interests or goals of the scientists. For chaotic systems, 

the update equations provide a good trade-off for (very) short-run prediction, but do not provide 

a good trade-off for long- or even medium-run prediction, explanation, and control. In contrast, 

the Lyapunov exponents, dimensions of reconstructed attractors, and so forth are robust and 

reliable in just the right way. In fact, they are called “invariants of motion” precisely because 



they are invariant over (almost) all conditions: regardless of when we start tracking the system, 

or how far out we want to predict features of the system, these invariants will continue to hold. 

Thus, they provide the stability that is necessary for successful prediction, explanation, and 

control. At the same time, the precise nonlinear equations will ultimately not provide us with the 

necessary prediction and control stability (except indirectly, as we can generate the coarser-

grained quantities from the update equations, either analytically or by numerical simulation).  

Another way of thinking about our proposal is in terms of Woodward’s (2006) discussion of 

the idea that we prefer working with insensitive causal relations (or at least, that our thinking 

about a causal relation depends in part on its sensitivity). Roughly speaking, a causal relation “C 

causes E” is sensitive if the “core” counterfactuals—“If C had occurred, then E would have 

occurred” and “If C had not occurred, then E would not have occurred”21—are sensitive, and a 

(true) counterfactual is sensitive just when that counterfactual is not true in nearby “close” 

possibilities. In general, all counterfactuals involve some relativity to the actual world, as 

evaluation of the counterfactual assumes the constancy (between the actual world and the 

counterfactual one) of a range of background conditions B1, …, Bn. For example, the truth of the 

counterfactual “If I had flipped the switch, then the lights would have turned on” depends in part 

on the (assumed) constancy of the background conditions “The house has power”, “The bulb 

filament is unbroken”, and so forth. A counterfactual is sensitive if it is true given B1, …, Bn but 

false if these background conditions are changed (and the degree of sensitivity depends on the 

plausibility and feasibility of those changes). And so a causal relation is sensitive if it fails to 

hold under small (by some measure) changes in the background conditions. Thus, a professor’s 

                                                
21 Of course, one of these is presumably a description of the actual world, not a counterfactual one. 



recommendation letter causing some future individual I not to be born22 (in Lewis, 1986) is a 

classic example of an exceptionally sensitive causal relation, while a hammer strike causing a 

wine glass to break is relatively insensitive. 

Our proposal about the proper modeling granularity for causal dynamics can thus be restated 

(roughly) as: the dynamics of a causal system should be expressed in a way that makes the 

resulting predictions and explanations as insensitive as possible. Thinking back about chaotic 

systems, the “update equation” characterization of the dynamics yields highly sensitive 

predictions: for example, if our measurement of the state of the system is close to, but not 

identical with, the true system state, then our predictions (using the update equations) of the 

future system states will be incorrect. However, insensitive dynamics emerge when we look at 

coarser-grained features of the dynamics, such as the invariants of the motion. Even under a wide 

range of changes in the relevant background conditions (including changes in the relevant 

measurement noise sources), the system will still exhibit the same invariants of motion, and so 

predictions of that aspect of the system’s dynamics are quite insensitive. Woodward (2006) 

focused on binary causal claims—either C causes E or not—and so this proposal can be viewed 

as a generalization of his ideas to more complicated types of dynamics and causal relations. 

We have presented this account of the appropriate granularity for describing the dynamics as 

complementary to the problem of finding the correct granularity for the variables in order to 

emphasize the contrast with prior work on the proper granularity of description for causal 

systems. But in fact, these two are deeply intertwined with one another, as there are important 

interactions between the variables used in a causal model and the appropriate dynamics for that 

                                                
22 At the least, there can be counterfactual dependence: getting a job can depend counterfactually on the quality of 
the recommendation letter; meeting one’s (future) spouse can depend on one’s job; marrying one’s spouse can 
depend on meeting him or her; and having a particular child can depend on marrying one’s spouse. So, if the letter 
had been different, then (possibly) one’s child would never have been born. 



model. Consider, again, a wine glass being shattered with a hammer. If the cause and effect 

variables in this case are simply Hard Hammer Strike and Glass Shatters, respectively (both 

either “yes” or “no”), then the causal relation—that is, the dynamic “equation”—can presumably 

be captured by a close-to-extremal conditional probability distribution. But if the variables are 

instead multidimensional ones such as Exact Hammer Strike (including the location, velocity, 

angle, etc.) and Exact Locations of Cracks in Glass, then the dynamics will presumably not be 

fruitfully captured in a standard “update” equation. In this latter case, the robust, reliable 

dynamics are presumably at a coarser grain, such as a mapping from (overlapping) regions of the 

Exact Hammer Strike state space to (overlapping) regions of the Exact Locations state space. 

This dependence of “granularity of dynamics” on “granularity of variables” is mutual: 

coarser-grained dynamics could potentially be used to suggest or justify different variables such 

that our causal models are more reliable or robust. More generally, there are (conceptually) three 

different possibilities. First, we might have independent reasons to prefer a particular set of 

variables, and then the challenge is to find the appropriate granularity for the dynamics. The 

Benincà, et al. (2008) case study fits into this scheme, as they do not entertain other variable sets; 

they assume (for good reasons) that the species abundances are the proper variables and then try 

to find the appropriate dynamics granularity. Second, we might instead have independent reasons 

to prefer a particular granularity of dynamics, and then the task is to determine the appropriate 

variables. The time series analysis of Chu & Glymour (2008) has exactly this form. They aim to 

model the causal structure of climate teleconnections—long-distance influences of one large part 

of the ocean (e.g., El Niño/La Niña) on another ocean region—and they assume that month-to-

month, nonlinear update equations are the proper granularity for the dynamics. Their challenge 

(of relevance to our paper) is then to determine whether the “proper” causal variables are 



aggregations of sea surface pressure and temperature measurements obtained from domain 

scientists, or those discovered by a machine learning clustering algorithm (see also Glymour, 

2007). 

A third possibility is arguably the most interesting: namely, that the proper granularities for 

the variables and dynamics might emerge only through a back-and-forth “negotiation” in which a 

set of variables is tentatively suggested and a dynamics granularity found, at which point the 

shortcomings of the dynamics prompts a search for different variables that (perhaps) have a more 

stable and reliable set of causal relations. This coevolution of variables and dynamics is arguably 

the most common process in scientific practice, as we rarely have sufficient a priori domain 

knowledge to fix in advance (and hold fixed throughout the scientific investigation) either the 

variable set or the granularity of the dynamics. At the same time, we often have background 

information that can help to provide a starting point for this coevolution.23 For example, we 

might expect the causal relations to be linear, or we might privilege (on metaphysical, epistemic, 

or instrumental grounds) some variables as most likely to be appropriate. There is thus a difficult 

“joint estimation” problem here in terms of finding the best variable set and granularity for 

describing the dynamics, but it is rarely a problem that we must tackle de novo without any 

constraints on the possibility space. A characterization of constraints and methods for this 

coevolutionary process is, to our knowledge, a completely open question. 

One intriguing question that is raised by our position is how many different, mutually 

supporting (and interesting or useful) pairs of descriptions of variables and dynamics exist for a 

particular system. At least in some particular cases, there can be multiple, defensible variable 

constructions that are arguably mutually incompatible with one another (Danks, 2015; Fancsali, 

2013; Spirtes, 2009; Woodward, 2016). And it seems possible, at least in theory, that there could 
                                                
23 Thanks to Jim Woodward and Roberta Millstein for raising this point. 



be a huge number of variables-dynamics pairs, each of which is an equally acceptable (or at 

least, incommensurable) way of capturing both the variables and dynamics of a system.24 We 

know of no studies or arguments that shed light on this question, probably because the issue of 

the granularity of descriptions of the dynamics has been relatively understudied. If there are 

many such pairs for some systems, then scientists potentially face significant challenges in 

determining which pair best satisfies their goals in a particular investigation. More generally, we 

have focused on finding the granularity for describing time series dynamics, but these lessons 

should apply to any account of causal relations, even when those relations are not dynamic. We 

suggest that this challenging aspect of “theory choice” (broadly construed)—determining the 

proper granularity for descriptions of causal relations, not just the relata—is more common in 

scientific practice than has previously been recognized or discussed in the philosophy of science 

literature. 

 

5. Conclusions 

There has historically been significant debate about exactly what lessons to draw from 

chaotic systems, both from scientific investigations of them and from their very existence. As we 

have argued in this paper, there is a superficially plausible argument that we cannot use causal 

knowledge to predict, explain, and control chaotic systems. Given the widespread occurrence of 

such systems in nature and the importance of these functions for causal models, such an 

argument would imply that we cannot have useful causal knowledge about much of the world. 

This argument is based, however, on an implicit assumption—widespread in much of the causal 

learning and modeling literature—that the causal system’s dynamics should be captured at the 

fine-grained level of a time series of exact system states. We have tried to show that chaotic 
                                                
24 Thanks to Carl Craver for emphasizing the possibility that there might be a large number of such pairs. 



systems are interesting in part because their dynamics do not show sufficient predictability or 

stability at this fine-grained level. Rather, we should characterize them in terms of coarser-

grained features, such as the invariants of motion. These are the aspects of the causal system that 

are relatively insensitive, and so provide the required stability for prediction, explanation, and 

control. Chaotic systems thus do provide an important lesson about causal learning and 

modeling: not that it is impossible, but rather that issues about the proper granularity of 

description arise not just about the causal variables, but also about the causal dynamics. 

 

 

Acknowledgments 

This paper benefited greatly from extensive discussion at the Causation in Biology II 

workshop at the Minnesota Center for Philosophy of Science, particularly the helpful comments 

and criticisms of Carl Craver, Laura Franklin-Hall, Ben Jantzen, Roberta Millstein, Naftali 

Weinberger, and Jim Woodward. Thanks also to Frederick Eberhardt and Clark Glymour for 

feedback on earlier drafts of this paper. The first author was partially supported by a James S. 

McDonnell Foundation Scholar Award. 



References 

Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York: Springer-Verlag. 
Benincà, E., Huisman, J., Heerkloss, R., Jöhnk, K. D., Branco, P., Van Nes, E. H., et al. (2008). 

Chaos in a long-term experiment with a plankton community. Nature, 451(7180), 822–825. 
Bernardo, Frigg, R., & Kronz, F. (2006). The ergodic hierarchy, randomness, and Hamiltonian 

chaos. Studies in History and Philosophy of Modern Physics, 37, 661–691. 
Bjornstad, O. N., & Grenfell, B. T. (2001). Noisy clockwork: Time series analysis of population 

fluctuations in animals. Science, 293, 638–643. 
Butterfield, J. (2012). Laws, causation and dynamics at different levels. Interface Focus, 2(1), 

101–114. 
Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of 

Machine Learning Research, 3, 507–554. 
Chu, T., & Glymour, C. (2008). Search for additive time series causal models. Journal of 

Machine Learning Research, 9, 967–991. 
Cushing, J. M., Costantino, R. F., Dennis, B., Desharnais, R. A., & Henson, S. M. (2003). Chaos 

in ecology: Experimental nonlinear dynamics. San Diego, CA: Academic Press. 
Danks, D. (2015). Goal-dependence in (scientific) ontology. Synthese, 192, 3601-3616. 
Earman, J. (1992). Bayes or bust? A critical examination of Bayesian confirmation theory. 

Cambridge, MA: The MIT Press. 
Fancsali, S. E. (2013). Constructing variables that support causal inference. (Doctoral 

dissertation). Carnegie Mellon University, Department of Philosophy. 
Fitelson, B. (1999). The plurality of Bayesian measures of confirmation and the problem of 

measure sensitivity. Philosophy of Science, 66, S362–S378. 
Ford, J., Mantica, G., & Ristow, G. H. (1991). The Arnol'd cat: Failure of the correspondence 

principle. Physica D, 50, 493–520. 
Franaszek, M. (1987). Chaotic, nonstrange attractors in the presence of external, random noise. 

Physical Review a (General Physics), 35(7), 3162–3165. 
Frigg, R. (2006). Chaos and randomness: An equivalence proof of a generalized version of the 

Shannon entropy and the Kolmogorov–Sinai entropy for Hamiltonian dynamical systems. 
Chaos, Solitons and Fractals, 28, 26–31. 

Glymour, C. (2007). When is a brain like the planet? Philosophy of Science, 74, 330–347. 
Gotman, J., & Marciani, M. G. (1985). Electroencephalographic spiking activity, drug levels, 

and seizure occurence in epileptic patients. Annals of Neurology, 17(6), 597–603. 
Grebogi, C., Ott, E., Pelikan, S., & Yorke, J. A. (1984). Strange attractors that are not chaotic. 

Physica D: Nonlinear Phenomena, 13(1-2), 261–268. 
Guastello, S. J., Koopmans, M., & Pincus, D. (Eds.). (2009). Chaos and complexity in 

psychology: The theory of nonlinear dynamical systems. New York: Oxford University 
Press. 

Hastings, A., & Powell, T. (1991). Chaos in a three-species food chain. Ecology, 72(3), 896–903. 
Huisman, J., & Weissing, F. J. (1999). Biodiversity of plankton by species oscillations and 

chaos. Nature, 402, 407–410. 
Kim, S., & Reichl, E. L. (1996). Stochastic chaos and resonance in a bistable stochastic system. 

Physical Review E, 53(4), 3088–3095. 
Koperski, J. (1998). Models, confirmation, and chaos. Philosophy of Science, 65, 624–648. 
Lewis, D. (1986). Postscript C to “Causation”: (Insensitive causation). In Philosophical papers 



(Vol. 2, pp. 184–188). Oxford: Oxford University Press. 
Li, T.-Y., & Yorke, J. A. (1975). Period three implies chaos. American Mathematical Monthly, 

82, 985–992. 
Ludwig, D. (2016). Ontological choices and the value-free ideal. Erkenntnis, 81, 1253-1272. 
Mañé, R. (1981). On the dimension of the compact invariant sets of certain non-linear maps. In 

D. A. Rand & L.-S. Young, Dynamical systems and turbulence, Warwick 1980 (pp. 230–
242). Berlin: Springer. 

May, R. M. (1974). Biological populations with nonoverlapping generations: Stable points, 
stable cycles, and chaos. Science, 186, 645–647. 

Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64, 
1196–1199. 

Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time 
series. Physical Review Letters, 45(9), 712–716. 

Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge: Cambridge University 
Press. 

Peters, E. E. (1994). Fractal market analysis: Applying chaos theory to investment and 
economics. New York: Wiley & Sons. 

Puu, T. (2003). Attractors, bifurcations, and chaos: Nonlinear phenomena in economics (2nd 
ed.). Berlin: Springer-Verlag. 

Ropelewski, C. F., & Halpert, M. S. (1996). Quantifying Southern Oscillation-precipitation 
relationships. Journal of Climate, 9, 1043–1059. 

Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., & Ditto, W. L. (1994). 
Controlling chaos in the brain. Nature, 370, 615–620. 

Singer, J., Wang, Y.-Z., & Bau, H. H. (1991). Controlling a chaotic system. Physical Review 
Letters, 66(9), 1123–1125. 

Sinnott-Armstrong, W. (2005). It's not my fault: Global warming and individual moral 
obligations. In W. Sinnott-Armstrong & R. B. Howarth, Perspectives on Climate Change: 
Science, Economics, Politics, Ethics (pp. 285–285). Amsterdam: Elsevier. 

Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the 
world. Behavioral and Brain Sciences, 10, 161–195. 

Slutzky, M. W., Cvitanovic, P., & Mogul, D. J. (2003). Manipulating epileptiform bursting in the 
rat hippocampus using chaos control and adaptive techniques. IEEE Transactions on 
Biomedical Engineering, 50(5), 559–570. 

Smith, P. (1998). Explaining chaos. Cambridge: Cambridge University Press. 
Spirtes, P. (2009). Variable definition and causal inference. In C. Glymour, W. Wang, & D. 

Westerstahl, Proceedings of the 13th international congress of logic, methodology, and 
philosophy of science. College Publications. 

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search (1st ed.). 
Berlin: Springer. 

Strevens, M. (2003). Bigger than chaos: understanding complexity through probability. 
Cambridge, MA: Harvard University Press. 

Takens, F. (1981). Detecting strange attractors in turbulence. In D. A. Rand & L.-S. Young, 
Dynamical systems and turbulence, Warwick 1980 (pp. 366–381). Berlin: Springer. 

Tillman, R. E., Gretton, A., & Spirtes, P. (2010). Nonlinear directed acyclic structure learning 
with weakly additive noise models. In Advances in neural information processing systems 
22. 



Tsuda, I. (2001). Toward an interpretation of dynamic neural activity in terms of chaotic 
dynamical systems. Behavioral and Brain Sciences, 24, 793–847. 

Vincent, T. L., & Yu, J. (1991). Control of a chaotic system. Dynamics and Control, 1(1), 35–52. 
Werndl, C. (2009). What are the new implications of chaos for unpredictability? British Journal 

for the Philosophy of Science, 60, 195–220. 
Woodward, J. (2006). Sensitive and insensitive causation. Philosophical Review, 115(1), 1–50. 
Woodward, J. (2016). The problem of variable choice. Synthese, 193, 1047-1072. 
Zhabotinsky, A. M. (1991). A history of chemical oscillations and waves. Chaos, 1, 379–386. 
 


