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Abstract—Empirical studies in software engineering frequently 

rely on correlation data in an effort to demonstrate that a 

process or tool affects an important or meaningful outcome, 

with the ultimate goal of improving software engineering 

practice. But all students of statistics know that “correlation 

does not imply causation,” and so causal conclusions (using 

traditional methods) from observational studies are inevitably 

highly constrained. These studies thus have limited impact on 

real world practice. In this paper, we use methods beyond 

mere correlation, and apply techniques of causal discovery to 

software engineering data as a means of unambiguously 

determining cause and effect. We apply causal discovery 

techniques to a set of observational data on open source 

projects; use the results to determine some consequences of 

architectural flaws; and show how causal inference may be 

applied to software engineering data in the future.  

Keywords-correlation studies; causal inference; empirical 

software engineering 

I.  WHY CAUSATION?   

Software engineering, as with any engineering discipline, 
is grounded in science [8]. In the case of software 
engineering, this broad-ranging scientific basis consists of 
purely technical or mathematical theories of computation, 
programming languages, data structures, algorithms, 
modularity, and many other areas.   

However, the practice of software engineering 
necessarily involves human effort: people collect 
requirements, and design, code, test, analyze, deploy, and 
maintain software. There have been decades of research on 
how to use this human capital efficiently. Empirical studies 
have been conducted to determine the costs and benefits of 
the many techniques, methods, tools, and languages that 
have been proposed and deployed. Of course, more research 
is needed, as seen by the many researchers, workshops, 
conferences, and journals that have emerged [6].  

Controlled experiments in software engineering, when 
they have occurred, have largely been met with skepticism. 
The prevailing wisdom is that the tradeoffs needed to make 
such experiments tractable—the limited size and experience 
of the group of experimental subjects, and the limited size 
and realism of the experimental task—make it difficult to 
translate those results to the broader software engineering 
profession. Controlled experiments tend to be conducted 
with relatively small populations of (relatively 
inexperienced) undergraduates, and with experimental tasks 

that constrain the messiness, ambiguity, and complexity that 
face practitioners in the real world. The software engineering 
practitioner community has therefore quite rightly questioned 
whether the results of such experiments can be profitably 
generalized to professional software engineers working on 
less constrained problems in real-world contexts.  

Of course, controlled experiments are not the only type 
of empirical studies. Increasingly, empirical research in 
software engineering has focused on case studies, action 
research, and studies of “naturalistic” phenomena (e.g., [3]). 
But these studies collect only observational data, and so 
traditional analysis techniques yield only correlations 
between project practices and characteristics (on the one 
hand) and measurable outcomes (on the other hand). And as 
every software project manager knows and will tell you, 
correlation does not mean causation. Without knowing the 
causal effects, it is difficult for that manager to act upon 
correlational evidence. For example, as source files in a 
software project increase in size, they tend to have more 
bugs and be touched by more developers. That is, file size, 
bugs, and number of developers are all strongly positively 
correlated. If one mistakes correlation for causation, then one 
might be tempted to conclude that bug rates could be 
lowered just by reducing the number of developers who are 
working on that file! 

While this example is simplistic, it captures the essence 
of the problems associated with relying on correlation data. 
While some correlations are spurious, others clearly are not.  
As Tufte said: “Correlation is not causation but it sure is a 
hint.” [11] Certainly, if one project characteristic or practice 
causes another, it will not only be statistically correlated with 
it, but also provide a means to change it. Our goal, therefore, 
is to understand the causal relations between project 
characteristics and practices and the outcomes that we desire. 
In doing so, we can confidently create concrete, actionable 
recommendations for software project managers: adopt this 
language, or tool, or practice and something that you care 
about—code quality, bug rate, productivity, developer 
satisfaction—will improve.  

In what follows, we explain our framework for reasoning 
about causality, and a case study to which we applied such 
methods. We show that one can, indeed, make justifiable 
causal claims based on data collected from naturalistic 
phenomena, and that this can greatly increase our 
understanding of, and hence recommendations for, best 
software engineering practices.  



II. A FRAMEWORK FOR CAUSAL MODELS 

Over the past thirty years, a robust framework for causal 
modeling—causal graphical models—has been developed, 
with algorithms for discovery of causal structure from 
observational, experimental, and mixed datasets. There have 
been multiple case studies, across domains ranging from 
genetics to ecology to computer hardware, in which these 
methods have been used on purely observational data, and 
the outputs (i.e., learned causal structures) have subsequently 
been experimentally confirmed. We thus have reason to 
causally interpret the graphical models learned by these 
algorithms, even though we have not yet conducted follow-
up confirmatory experiments. 

A. Causal modeling & inference 

We employ the standard framework of causal graphical 
models (CGMs); causal Bayesian networks (CBNs) and 
causal structural equation models (SEMs) are two common 
types of CGMs, but not the only ones. At a high level, a 
CGM has two distinct components: (1) a graph for 
qualitative causal relations, and (2) a joint probability 
distribution or density for quantitative causal strengths. The 
graph is over nodes for the variables—V1, …, Vn—with Vc 

 Ve if Vc is a (qualitative) cause of Ve. The notion of 

causation here is instrumental: Vc  Ve means that external 
interventions on Vc will probabilistically lead to changes in 
Ve, but not vice versa. The intensity of that causal connection 
is represented in the joint distribution or density P(V1, …, 
Vn). These two components are connected through a pair of 
assumptions, commonly called Markov and Faithfulness, 
each of which uses one component to constrain the other. 
These assumptions encode standard, domain-general ways in 
which causal relations manifest in data. For a given CGM, 
there are fast, computationally efficient algorithms for 
inference and prediction given observations or interventions 
(including policy changes), many implemented in standard 
software packages [5], [10]. 

B. Causal discovery 

Perhaps surprisingly, every CGM implies a determinate 
pattern of (un)conditional independencies and associations 
over V1, …, Vn. Causal discovery is difficult because the 
reverse is not true: any particular pattern of independencies 

can be generated by multiple different CGMs. The CGM  

Independence Pattern map is many  one. Nonetheless, 
given an observed pattern of (un)conditional independences, 
one can determine the set of CGMs (if any) that could have 
produced that pattern. Sometimes that set will be a singleton, 
in which case the causal structure can be uniquely identified. 
More frequently, the set has a few different members that 
share many causal/structural features. 

Numerous algorithms have been developed over the past 
thirty years for this problem, including Bayesian, score-
based [1], constraint-based [10], and more sophisticated [9] 
methods. And these different types of algorithms have been 
generalized for situations with unobserved common causes, 
sample selection bias, time series data, proxy measurements, 
millions of variables, and many other conditions. As noted 

above, these algorithms have been applied, with 
confirmatory follow-up experiments, in a wide range of 
domains; there is a track record of successful causal 
discovery using these methods. 

III. A CASE STUDY IN CAUSAL DISCOVERY   

The dataset that we examine in this paper resulted from 
an exploration of architectural design flaws in a set of large, 
primarily open source software systems. Those systems were 
identified in two separate studies ([4] and [2]) that explored 
the relationship between design flaws and multiple outcomes 
that were (potentially) caused by design flaws. However, 
those studies—like the vast majority of studies in software 
engineering—drew only correlational conclusions, and so 
cannot be used to confidently justify policy or practice 
changes. In this paper, we aim to determine whether 
architectural design flaws caused higher rates of bugs, higher 
rates of changes, and higher amounts of churn (committed 
lines of code). 

A. Data 

We analyzed both sets of projects, and project versions, 
as listed in Table 1. These two studies analyzed a total of 15 
distinct projects, and 20 distinct project versions, across a 
wide variety of application domains, and with greatly 
varying ages and sizes: the commercial project had just 
56,000 lines of code, while the Google Chrome browser had 
over 5 million lines of code. We focused on nine systems for 
the present analysis, indicated in bold in Table 1. 

 
Table 1: Subject Projects and Versions 

 
Project Study 1 [4] Study 2 [2] 

Avro 1.7.6 1.6.3 

Camel 2.11.1 2.8.4 

Cassandra 1.0.7  

CXF 2.7.10 2.5.2 

Derby  10.9.1.0 

Hadoop 2.2.0 0.94.0 

HBase 0.94.16 0.94.0 

Httpd  2.0.58 

Ivy 2.3.0  

OpenJPA 2.2.2  

PDFBox 1.8.4  

PHP  4.4.6 

Tomcat  6.0.0 

Commercial N/A  

Chrome  17.0.963.46 
 

To collect the raw data, the original studies extracted the 
source code, revision histories, and issue-tracking databases 
from each of these projects. Using the revision histories and 
issue-tracking databases, they calculated the number of bugs 
and changes (non-bugs) associated with each file in each 
project, as well as the churn associated with each bug or 
change. These two studies relied on each project’s issue 
tracking system (and their own internal conventions) to 
determine what was a bug and what was a change. Next, 



each project’s source code was reverse-engineered to analyze 
all of the static relationships between its files (e.g. calling, 
inheritance, typing, etc.). This information was used to build 
and analyze a DRSpace (Design Rule Space) representation 
of each project’s modular structure (as described in [12] and 
[13]). By analyzing the resulting DRSpaces, the design flaws 
associated with each file in each project were calculated, as 
described in [4]. 

Using this collected data, those two studies calculated a 
number of correlations: between the number of design flaws 
that a file was implicated in, on the one hand, and four 
different extrinsic measures of a file’s goodness—number of 
bugs, number of changes, bug churn, and change churn—on 
the other hand. To do this the Pearson Correlation 
Coefficient (PCC) was calculated between the four pairs of 
data sets. An example of the correlation results that were 
reported in the original studies ([4] and [2]) is presented in 
Table 2, for the Apache Avro project. 

 
Table 2: Correlations for Apache Avro 1.7.6 

 

# 
Flaws 

Avg. 
Bug 
Freq. 

Avg. 
Bug 

Churn 

Avg. 
Change 
Freq. 

Avg. 
Change 
Churn 

0 0.1 3.7 0.5 29.0 

1 0.4 3.9 0.9 26.2 

2 1.6 12.6 5.2 376.7 

3 7.9 124.5 21.6 628.5 

4 16.5 255.0 33.5 1220.0 

PCC 0.91 0.89 0.94 0.95 

 
It is obvious from a cursory examination of the data that 

as the number of design flaws per file increases, so too do 
the average numbers of bugs, changes, bug churn, and 
change churn. The PCC values shown in the last row of 
Table 2 bear out this observation: these variables are strongly 
correlated. And such correlations were similarly observed for 
all 20 of the projects in the two prior studies. But the 
question remains: do the observed design flaws cause the 
higher rates of bugs, changes, and churn, or is there some 
other explanation, such as a third (unexplored) variable that 
accounts for the observed correlation? This is the crucial 
question that we seek to understand in the present study. 

These strong correlations present a complication for 
causal discovery, as they increase the number of variables 
without substantially increasing the amount of information or 
signal. Moreover, highly correlated variables can create 
spurious independences—factors that are causally connected 
can appear independent, due to the particular mathematical 
definition of statistical independence. There were two triples 
of highly intercorrelated variables; in both cases, we retained 
one variable as a proxy for the set. Thus, our final analyses 
focused on six variables:  
Age  [age in months] Devs  [# of developers] 
LOC  [lines of code] Violations  [total # of violations] 
Churn_bugs  [bug churn] Bugs  [# of bugs] 

B. Causal discovery 

We applied the PC algorithm [10] to the datasets for the 
nine systems shown in bold in Table 1. The PC algorithm is 
an asymptotically reliable, constraint-based causal discovery 
method that efficiently determines the set of structures over 
V1, …, Vn that imply the observed pattern of (un)conditional 
independencies. The PC algorithm has a free parameter—the 
alpha level used in independence tests—that controls the 
relative proportions of Type I and Type II errors. For each of 
the nine datasets, as well as the concatenation of all nine, we 
applied the PC algorithm at α=0.05. The PC algorithm does 
not explicitly search for causal structures with unobserved 
common causes, in contrast with algorithms such as FCI that 
do have this ability. Thus, a causal edge in the output could 
potentially be explained in other ways. Importantly, though, 
absences of causal edges are robust against the possibility of 

unobserved common causes: if there is no A  B edge, then 
we can reliably conclude that A does not directly cause B 
(subject to the usual errors due to statistical noise). 

As an example of the algorithm output, the causal graph 
for all nine concatenated datasets is shown in Figure 1. This 

causal graph includes a bidrected edge Dev  LOC, 
indicating the likely existence of an unobserved common 
cause of the two (plausibly, something like project size). 
Although the PC algorithm does not explicitly search for 
such unobserved factors, it does sometimes include them 
when required to explain the observed data. 

 

Age 

Devs LOC 

Violations 

Bugs 

Churn_bugs 

 
Figure 1: Output graph for all nine datasets 

 
Some aspects of Figure 1 provide useful “sanity checks.” 

For example, LOC  Bugs is predicted by essentially every 
model (and experience) of software development. It is also 
sensible that Age only influences other variables through the 
mediating factor of Devs. The age of a project should not 
directly cause problems, but only because older projects tend 
to have had more people working on them. 

This causal graph provides a suggestive answer to our 
key question, as we see directed edges from Violations to 
Bugs and Churn_bugs. However, it is important not to over-
interpret Figure 1. The software projects studied are quite 
diverse, and so the concatenated dataset may be a mixture 
distribution. Mixtures are known to give misleading results 
for causal discovery algorithms [7]. We thus did an 
additional analysis, focusing on the shared causal structures 



across multiple individual projects. Interestingly, only one 

edge (Devs  Bugs) appeared in almost every output, which 
further suggests causal diversity between projects.  

We thus post hoc identified groups of projects based on 
shared causal structure. Apache Avro was quite different 
from all the others, so we exclude it from this analysis. The 
projects fell into two rough groups: {Camel, Cassandra, 
Hadoop, OpenJPA, PDFBox} vs. {CXF, HBase, Ivy}. Table 
3 lists the “characteristic” causal structures for each cluster 
(i.e., the edges that appear in most graphs for those projects). 

 
Table 3: Characteristic edges for project-groups 

 
Camel, Cassandra, Hadoop, 

OpenJPA, PDFBox 
CXF, HBase, Ivy 

Devs  LOC 

LOC  Violations  

Violations  Churn_bugs  

Age  Bugs 

Devs  Bugs  

LOC  Bugs  

Violations  Bugs 

Churn_bugs  Bugs 

Age  Devs 

Devs  Bugs  

Bugs  Churn_bugs  

LOC  Churn_bugs 

 
These two groups exhibit quite different types of causal 

structures. Most obviously, the first group of projects simply 
has more causal connections than the second. The details 
also vary between the groups. For example, they both posit a 
causal connection between Bugs and Churn_bugs, but the 
directions differ. More generally, Bugs is the “causal sink”—
the variable that is caused by many other things in the 
system—in the first group of projects, but Churn_bugs is the 
sink for the second.  

With regards to our key question, we find different 
answers in the two groups of projects. In the first group, 
Violations is a direct cause of both Bugs and Churn_bugs; 
that is, we predict that focusing on violation reduction should 
lower the number of bugs, and their churn. In the second 
group, though, Violations is not causally connected with any 
of the other variables. We thus predict that a focus on 
violation reduction would not have a corresponding impact 
on bugs in those three projects. 

Why are there these differences? At this point, we do not 
know. We focused on a limited set of variables, and 
presumably there are others, perhaps capturing project 
practices and characteristics, that would explain these results 
if they were included in our datasets. Nonetheless, causal 
discovery and analysis has provided us with a powerful new 
tool in our toolbox to ask and examine such questions. 

IV. CONCLUSIONS AND NEXT STEPS 

This causal discovery analysis is intended as an initial 
step, and is certainly not the final word. For example, one 
could apply multiple causal discovery algorithms to measure 

the sensitivity of the learned structures to the use of the PC 
algorithm. Moreover, software projects exhibit significant 
dynamics over time, as code is written, refined, refactored, 
and so forth. We used static datasets that provide snapshots 
of the projects at particular moments in time. If we collect 
longitudinal data about similar variables, then we could start 
to uncover the underlying causal dynamics. One might also 
suspect that those dynamics could shift over time, as the 
software practices and philosophies change, as project 
members enter and leave, etc. Longitudinal data could also 
enable us to test for this type of causal non-stationarity. The 
key point that we have established here, however, is the first 
demonstration of the applicability and usefulness of causal 
discovery algorithms applied to observational software 
engineering datasets. 
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