
Causal Modeling, Discovery, & Inference for Software Engineering

Authors Name/s per 1st Affiliation (Author)

line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail: name@xyz.com

Authors Name/s per 2nd Affiliation (Author)

line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail: name@xyz.com

Abstract—Empirical studies in software engineering frequently

rely on correlation data in an effort to demonstrate that a

process or tool affects an important or meaningful outcome,

with the ultimate goal of improving software engineering

practice. But all students of statistics know that “correlation

does not imply causation,” and so causal conclusions (using

traditional methods) from observational studies are inevitably

highly constrained. These studies thus have limited impact on

real world practice. In this paper, we use methods beyond

mere correlation, and apply techniques of causal discovery to

software engineering data as a means of unambiguously

determining cause and effect. We apply causal discovery

techniques to a set of observational data on open source

projects; use the results to determine some consequences of

architectural flaws; and show how causal inference may be

applied to software engineering data in the future.

Keywords-correlation studies; causal inference; empirical

software engineering

I. WHY CAUSATION?

Software engineering, as with any engineering discipline,
is grounded in science [8]. In the case of software
engineering, this broad-ranging scientific basis consists of
purely technical or mathematical theories of computation,
programming languages, data structures, algorithms,
modularity, and many other areas.

However, the practice of software engineering
necessarily involves human effort: people collect
requirements, and design, code, test, analyze, deploy, and
maintain software. There have been decades of research on
how to use this human capital efficiently. Empirical studies
have been conducted to determine the costs and benefits of
the many techniques, methods, tools, and languages that
have been proposed and deployed. Of course, more research
is needed, as seen by the many researchers, workshops,
conferences, and journals that have emerged [6].

Controlled experiments in software engineering, when
they have occurred, have largely been met with skepticism.
The prevailing wisdom is that the tradeoffs needed to make
such experiments tractable—the limited size and experience
of the group of experimental subjects, and the limited size
and realism of the experimental task—make it difficult to
translate those results to the broader software engineering
profession. Controlled experiments tend to be conducted
with relatively small populations of (relatively
inexperienced) undergraduates, and with experimental tasks

that constrain the messiness, ambiguity, and complexity that
face practitioners in the real world. The software engineering
practitioner community has therefore quite rightly questioned
whether the results of such experiments can be profitably
generalized to professional software engineers working on
less constrained problems in real-world contexts.

Of course, controlled experiments are not the only type
of empirical studies. Increasingly, empirical research in
software engineering has focused on case studies, action
research, and studies of “naturalistic” phenomena (e.g., [3]).
But these studies collect only observational data, and so
traditional analysis techniques yield only correlations
between project practices and characteristics (on the one
hand) and measurable outcomes (on the other hand). And as
every software project manager knows and will tell you,
correlation does not mean causation. Without knowing the
causal effects, it is difficult for that manager to act upon
correlational evidence. For example, as source files in a
software project increase in size, they tend to have more
bugs and be touched by more developers. That is, file size,
bugs, and number of developers are all strongly positively
correlated. If one mistakes correlation for causation, then one
might be tempted to conclude that bug rates could be
lowered just by reducing the number of developers who are
working on that file!

While this example is simplistic, it captures the essence
of the problems associated with relying on correlation data.
While some correlations are spurious, others clearly are not.
As Tufte said: “Correlation is not causation but it sure is a
hint.” [11] Certainly, if one project characteristic or practice
causes another, it will not only be statistically correlated with
it, but also provide a means to change it. Our goal, therefore,
is to understand the causal relations between project
characteristics and practices and the outcomes that we desire.
In doing so, we can confidently create concrete, actionable
recommendations for software project managers: adopt this
language, or tool, or practice and something that you care
about—code quality, bug rate, productivity, developer
satisfaction—will improve.

In what follows, we explain our framework for reasoning
about causality, and a case study to which we applied such
methods. We show that one can, indeed, make justifiable
causal claims based on data collected from naturalistic
phenomena, and that this can greatly increase our
understanding of, and hence recommendations for, best
software engineering practices.

II. A FRAMEWORK FOR CAUSAL MODELS

Over the past thirty years, a robust framework for causal
modeling—causal graphical models—has been developed,
with algorithms for discovery of causal structure from
observational, experimental, and mixed datasets. There have
been multiple case studies, across domains ranging from
genetics to ecology to computer hardware, in which these
methods have been used on purely observational data, and
the outputs (i.e., learned causal structures) have subsequently
been experimentally confirmed. We thus have reason to
causally interpret the graphical models learned by these
algorithms, even though we have not yet conducted follow-
up confirmatory experiments.

A. Causal modeling & inference

We employ the standard framework of causal graphical
models (CGMs); causal Bayesian networks (CBNs) and
causal structural equation models (SEMs) are two common
types of CGMs, but not the only ones. At a high level, a
CGM has two distinct components: (1) a graph for
qualitative causal relations, and (2) a joint probability
distribution or density for quantitative causal strengths. The
graph is over nodes for the variables—V1, …, Vn—with Vc

 Ve if Vc is a (qualitative) cause of Ve. The notion of

causation here is instrumental: Vc  Ve means that external
interventions on Vc will probabilistically lead to changes in
Ve, but not vice versa. The intensity of that causal connection
is represented in the joint distribution or density P(V1, …,
Vn). These two components are connected through a pair of
assumptions, commonly called Markov and Faithfulness,
each of which uses one component to constrain the other.
These assumptions encode standard, domain-general ways in
which causal relations manifest in data. For a given CGM,
there are fast, computationally efficient algorithms for
inference and prediction given observations or interventions
(including policy changes), many implemented in standard
software packages [5], [10].

B. Causal discovery

Perhaps surprisingly, every CGM implies a determinate
pattern of (un)conditional independencies and associations
over V1, …, Vn. Causal discovery is difficult because the
reverse is not true: any particular pattern of independencies

can be generated by multiple different CGMs. The CGM 

Independence Pattern map is many  one. Nonetheless,
given an observed pattern of (un)conditional independences,
one can determine the set of CGMs (if any) that could have
produced that pattern. Sometimes that set will be a singleton,
in which case the causal structure can be uniquely identified.
More frequently, the set has a few different members that
share many causal/structural features.

Numerous algorithms have been developed over the past
thirty years for this problem, including Bayesian, score-
based [1], constraint-based [10], and more sophisticated [9]
methods. And these different types of algorithms have been
generalized for situations with unobserved common causes,
sample selection bias, time series data, proxy measurements,
millions of variables, and many other conditions. As noted

above, these algorithms have been applied, with
confirmatory follow-up experiments, in a wide range of
domains; there is a track record of successful causal
discovery using these methods.

III. A CASE STUDY IN CAUSAL DISCOVERY

The dataset that we examine in this paper resulted from
an exploration of architectural design flaws in a set of large,
primarily open source software systems. Those systems were
identified in two separate studies ([4] and [2]) that explored
the relationship between design flaws and multiple outcomes
that were (potentially) caused by design flaws. However,
those studies—like the vast majority of studies in software
engineering—drew only correlational conclusions, and so
cannot be used to confidently justify policy or practice
changes. In this paper, we aim to determine whether
architectural design flaws caused higher rates of bugs, higher
rates of changes, and higher amounts of churn (committed
lines of code).

A. Data

We analyzed both sets of projects, and project versions,
as listed in Table 1. These two studies analyzed a total of 15
distinct projects, and 20 distinct project versions, across a
wide variety of application domains, and with greatly
varying ages and sizes: the commercial project had just
56,000 lines of code, while the Google Chrome browser had
over 5 million lines of code. We focused on nine systems for
the present analysis, indicated in bold in Table 1.

Table 1: Subject Projects and Versions

Project Study 1 [4] Study 2 [2]

Avro 1.7.6 1.6.3

Camel 2.11.1 2.8.4

Cassandra 1.0.7

CXF 2.7.10 2.5.2

Derby 10.9.1.0

Hadoop 2.2.0 0.94.0

HBase 0.94.16 0.94.0

Httpd 2.0.58

Ivy 2.3.0

OpenJPA 2.2.2

PDFBox 1.8.4

PHP 4.4.6

Tomcat 6.0.0

Commercial N/A

Chrome 17.0.963.46

To collect the raw data, the original studies extracted the
source code, revision histories, and issue-tracking databases
from each of these projects. Using the revision histories and
issue-tracking databases, they calculated the number of bugs
and changes (non-bugs) associated with each file in each
project, as well as the churn associated with each bug or
change. These two studies relied on each project’s issue
tracking system (and their own internal conventions) to
determine what was a bug and what was a change. Next,

each project’s source code was reverse-engineered to analyze
all of the static relationships between its files (e.g. calling,
inheritance, typing, etc.). This information was used to build
and analyze a DRSpace (Design Rule Space) representation
of each project’s modular structure (as described in [12] and
[13]). By analyzing the resulting DRSpaces, the design flaws
associated with each file in each project were calculated, as
described in [4].

Using this collected data, those two studies calculated a
number of correlations: between the number of design flaws
that a file was implicated in, on the one hand, and four
different extrinsic measures of a file’s goodness—number of
bugs, number of changes, bug churn, and change churn—on
the other hand. To do this the Pearson Correlation
Coefficient (PCC) was calculated between the four pairs of
data sets. An example of the correlation results that were
reported in the original studies ([4] and [2]) is presented in
Table 2, for the Apache Avro project.

Table 2: Correlations for Apache Avro 1.7.6

Flaws

Avg.
Bug
Freq.

Avg.
Bug

Churn

Avg.
Change
Freq.

Avg.
Change
Churn

0 0.1 3.7 0.5 29.0

1 0.4 3.9 0.9 26.2

2 1.6 12.6 5.2 376.7

3 7.9 124.5 21.6 628.5

4 16.5 255.0 33.5 1220.0

PCC 0.91 0.89 0.94 0.95

It is obvious from a cursory examination of the data that

as the number of design flaws per file increases, so too do
the average numbers of bugs, changes, bug churn, and
change churn. The PCC values shown in the last row of
Table 2 bear out this observation: these variables are strongly
correlated. And such correlations were similarly observed for
all 20 of the projects in the two prior studies. But the
question remains: do the observed design flaws cause the
higher rates of bugs, changes, and churn, or is there some
other explanation, such as a third (unexplored) variable that
accounts for the observed correlation? This is the crucial
question that we seek to understand in the present study.

These strong correlations present a complication for
causal discovery, as they increase the number of variables
without substantially increasing the amount of information or
signal. Moreover, highly correlated variables can create
spurious independences—factors that are causally connected
can appear independent, due to the particular mathematical
definition of statistical independence. There were two triples
of highly intercorrelated variables; in both cases, we retained
one variable as a proxy for the set. Thus, our final analyses
focused on six variables:
Age [age in months] Devs [# of developers]
LOC [lines of code] Violations [total # of violations]
Churn_bugs [bug churn] Bugs [# of bugs]

B. Causal discovery

We applied the PC algorithm [10] to the datasets for the
nine systems shown in bold in Table 1. The PC algorithm is
an asymptotically reliable, constraint-based causal discovery
method that efficiently determines the set of structures over
V1, …, Vn that imply the observed pattern of (un)conditional
independencies. The PC algorithm has a free parameter—the
alpha level used in independence tests—that controls the
relative proportions of Type I and Type II errors. For each of
the nine datasets, as well as the concatenation of all nine, we
applied the PC algorithm at α=0.05. The PC algorithm does
not explicitly search for causal structures with unobserved
common causes, in contrast with algorithms such as FCI that
do have this ability. Thus, a causal edge in the output could
potentially be explained in other ways. Importantly, though,
absences of causal edges are robust against the possibility of

unobserved common causes: if there is no A  B edge, then
we can reliably conclude that A does not directly cause B
(subject to the usual errors due to statistical noise).

As an example of the algorithm output, the causal graph
for all nine concatenated datasets is shown in Figure 1. This

causal graph includes a bidrected edge Dev  LOC,
indicating the likely existence of an unobserved common
cause of the two (plausibly, something like project size).
Although the PC algorithm does not explicitly search for
such unobserved factors, it does sometimes include them
when required to explain the observed data.

Age

Devs LOC

Violations

Bugs

Churn_bugs

Figure 1: Output graph for all nine datasets

Some aspects of Figure 1 provide useful “sanity checks.”

For example, LOC  Bugs is predicted by essentially every
model (and experience) of software development. It is also
sensible that Age only influences other variables through the
mediating factor of Devs. The age of a project should not
directly cause problems, but only because older projects tend
to have had more people working on them.

This causal graph provides a suggestive answer to our
key question, as we see directed edges from Violations to
Bugs and Churn_bugs. However, it is important not to over-
interpret Figure 1. The software projects studied are quite
diverse, and so the concatenated dataset may be a mixture
distribution. Mixtures are known to give misleading results
for causal discovery algorithms [7]. We thus did an
additional analysis, focusing on the shared causal structures

across multiple individual projects. Interestingly, only one

edge (Devs  Bugs) appeared in almost every output, which
further suggests causal diversity between projects.

We thus post hoc identified groups of projects based on
shared causal structure. Apache Avro was quite different
from all the others, so we exclude it from this analysis. The
projects fell into two rough groups: {Camel, Cassandra,
Hadoop, OpenJPA, PDFBox} vs. {CXF, HBase, Ivy}. Table
3 lists the “characteristic” causal structures for each cluster
(i.e., the edges that appear in most graphs for those projects).

Table 3: Characteristic edges for project-groups

Camel, Cassandra, Hadoop,

OpenJPA, PDFBox
CXF, HBase, Ivy

Devs  LOC

LOC  Violations

Violations  Churn_bugs

Age  Bugs

Devs  Bugs

LOC  Bugs

Violations  Bugs

Churn_bugs  Bugs

Age  Devs

Devs  Bugs

Bugs  Churn_bugs

LOC  Churn_bugs

These two groups exhibit quite different types of causal

structures. Most obviously, the first group of projects simply
has more causal connections than the second. The details
also vary between the groups. For example, they both posit a
causal connection between Bugs and Churn_bugs, but the
directions differ. More generally, Bugs is the “causal sink”—
the variable that is caused by many other things in the
system—in the first group of projects, but Churn_bugs is the
sink for the second.

With regards to our key question, we find different
answers in the two groups of projects. In the first group,
Violations is a direct cause of both Bugs and Churn_bugs;
that is, we predict that focusing on violation reduction should
lower the number of bugs, and their churn. In the second
group, though, Violations is not causally connected with any
of the other variables. We thus predict that a focus on
violation reduction would not have a corresponding impact
on bugs in those three projects.

Why are there these differences? At this point, we do not
know. We focused on a limited set of variables, and
presumably there are others, perhaps capturing project
practices and characteristics, that would explain these results
if they were included in our datasets. Nonetheless, causal
discovery and analysis has provided us with a powerful new
tool in our toolbox to ask and examine such questions.

IV. CONCLUSIONS AND NEXT STEPS

This causal discovery analysis is intended as an initial
step, and is certainly not the final word. For example, one
could apply multiple causal discovery algorithms to measure

the sensitivity of the learned structures to the use of the PC
algorithm. Moreover, software projects exhibit significant
dynamics over time, as code is written, refined, refactored,
and so forth. We used static datasets that provide snapshots
of the projects at particular moments in time. If we collect
longitudinal data about similar variables, then we could start
to uncover the underlying causal dynamics. One might also
suspect that those dynamics could shift over time, as the
software practices and philosophies change, as project
members enter and leave, etc. Longitudinal data could also
enable us to test for this type of causal non-stationarity. The
key point that we have established here, however, is the first
demonstration of the applicability and usefulness of causal
discovery algorithms applied to observational software
engineering datasets.

ACKNOWLEDGMENT

Removed for blinding.

REFERENCES

[1] D. M. Chickering. “Optimal Structure Identification with Greedy
Search”, Journal of Machine Learning Research, 2002, 3, 507–554.

[2] Q. Feng, R. Kazman, Y. Cai, R. Mo, L. Xiao, “An Architecture-
centric Approach to Security Analysis”, Proceedings of the 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA
2016), (Venice, Italy), April 2016.

[3] R. Kazman, D. Goldenson, I. Monarch, W. Nichols, G. Valetto,
“Evaluating the Effects of Architectural Documentation: A Case
Study of a Large Scale Open Source Project”, IEEE Transactions on
Software Engineering, 2016, 42:3, 220-260.

[4] R. Mo, Y. Cai, R. Kazman, L. Xiao, “Hotspot Patterns: The Formal
Definition and Automatic Detection of Architecture Smells”,
Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2015), (Montreal, Canada), May 2015.

[5] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco: Morgan Kaufmann. 1988.

[6] D. Perry, A. Porter, L. Votta, “Empirical studies of software
engineering: a roadmap”, Proceedings of the Conference on the future
of Software Engineering, 345-355, 2000.

[7] J. D. Ramsey, P. Spirtes, C. Glymour, “On Meta-analyses of Imaging
Data and the Mixture of Records”, 2011, NeuroImage, 57, 323-330.

[8] M. Shaw, “Prospects for an Engineering Discipline of Software”,
IEEE Software, 7 (6), 15-24, 1990.

[9] S. Shimizu, P. O. Hoyer, A. Hyvärinen, A. Kerminen, “A Linear
Non-Gaussian Acyclic Model for Causal Discovery”, Journal of
Machine Learning Research, 2006, 7, 2003–2030.

[10] P. Spirtes, C. Glymour, R. Scheines. Causation, Prediction, and
Search (2nd ed.). Cambridge, MA: The MIT Press. 2000.

[11] E. Tufte, The Cognitive Style of PowerPoint: Pitching Out Corrupts
Within, 2nd ed, Graphics Press, 2006.

[12] L. Xiao, Y. Cai, R. Kazman, “Titan: A Toolset That Connects
Software Architecture with Quality Analysis”, Proceedings of the
22nd ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014), (Hong Kong), November 2014.

[13] L. Xiao, Y. Cai, R. Kazman, "Design Rule Spaces: A New Form of
Architecture Insight", Proceedings of the International Conference on
Software Engineering (ICSE) 2014, (Hyderabad, India), June 2014.

