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Learning by artificial intelligence systems¾what I will typically call machine 

learning¾has a distinguished history, and the field has experienced something of a renaissance 

in the past twenty years. Machine learning consists principally of a diverse set of algorithms and 

techniques that have been applied to problems in a wide range of domains. Any overview of the 

methods and applications will inevitably be incomplete, at least at the level of specific 

algorithms and techniques. There are many excellent introductions to the formal and statistical 

details of machine learning algorithms and techniques available elsewhere (e.g., Bishop, 1995; 

Duda, Hart, & Stork, 2000; Hastie, Tibshirani, & Friedman, 2001; Mitchell, 1997). The present 

chapter focuses on machine learning as a general way of “thinking about the world,” and 

provides a high-level characterization of the major goals of machine learning. There are a 

number of philosophical concerns that have been raised about machine learning, but upon closer 

examination, it is not always clear whether the objections really speak against machine learning 

specifically. Many seem rather to be directed towards machine learning as a particular 

instantiation of some more general phenomenon or process. One of the general morals of this 

chapter is that machine learning is, in many ways, less unusual or peculiar than is sometimes 

thought. 

Three Broad Classes of Inference 

At a very high level, one can distinguish between three different, not necessarily 

exhaustive, inferential strategies: analogical, domain-specific, and structural. As an example of 

the generality of this taxonomy, both deductive and inductive logics are types of structural 

inference. Analogical inference aims to map some situation or problem onto salient historical 

examples, whether well-known or personal; inferences are then made by using the analogical 

mapping to translate the historical outcomes onto the present problem. The problems and 



outcomes need not be large or significant: if one has previous experiences with light switches 

and light bulbs, then one can use analogical inference to make a decision about how to turn on 

the lights when entering a new room. If the analogies are suitable, then analogical inference can 

support inferences for very rare situations or phenomena, or inferences from very limited data. 

The reliability of analogical inference is, however, highly dependent on the analogical cases and 

mappings, and there is little known about search for such cases, or development of suitable 

mappings. With regards to the focus of this chapter, analogical inference is rarely done by 

machine; usually, we do analogical inference in our minds.  

Domain-specific inference uses techniques that are specifically tailored to knowledge 

about the particular problems, environments, and responses that occur in a domain. By using 

specialized algorithms and constraints, one can often make quite powerful inferences, even given 

only limited amounts of data. Domain-specific methods, however, can only be developed and 

used with substantial prior domain knowledge, which may preclude the widespread use of such 

methods. Domain-specific machine learning and inference can often be understood as part of the 

particular domain, rather than as a distinctive and novel inference strategy. Also, since any 

technique must use some domain-specific information (e.g., the possible values of a variable), it 

is unclear whether any sharp line can be drawn to delimit exactly the “domain-specific” methods, 

though there are clearly many inference algorithms that are applicable only for highly specific 

situations. 

Structural inference uses (relatively) domain-general algorithms whose success depends 

on the internal structure of the data, rather than features of the semantic content of the data. That 

is, structural inference focuses on the relationships among the variables, objects, or predicates, 

rather than on any intrinsic properties of them. This type of inference is necessarily domain-



general, as such methods are explicitly designed not to use any domain information except 

“structural” information about the objects of inference (e.g., number of variable values, whether 

spatial location of objects is relevant, and so on). The advantage of structural inference is 

obvious: the methods are applicable for any domain in which the appropriate structural features 

hold and can be discovered from data. These methods are thus not restricted to domains in which 

we happen to have substantial prior knowledge, nor do we need to have any significant 

experience with situations of this type. The disadvantages of such inferences are equally obvious: 

one cannot infer domain-specific mechanisms (since domain-specific information is excluded), 

and inference from small datasets can be quite difficult. 

Structural inference is the basis of many, and arguably most, machine learning 

frameworks and methods (including many well-known ones such as various forms of regression, 

neural network learning algorithms such a back-propagation, and causal learning algorithms 

using Bayesian networks). In all of these methods, the algorithm works by extracting¾and 

exploiting¾structural relationships among the variables without regard to the meaning or 

domain of the variables. For example, if doing classification using an artificial neural network, 

one might be provided with a dataset containing measurements of various features of widgets, as 

well as some target category. The neural net learning algorithm (e.g., standard back-propagation) 

then uses only the statistical regularities in the dataset to learn the relevant inter-variable 

structure, which can then be used to predict the target category (“functional” vs. “defective”) for 

future widgets. The precise “meaning” of the variables is irrelevant to the learning algorithm. For 

all of these methods, one need not know much about the underlying domain in order to apply the 

methods, though domain-specific information (e.g., variable X takes on a value before variable 

Y) can typically be incorporated in various ways. The domain-generality of machine learning 



methods partly explains their popularity in relatively novel scientific domains, such as 

bioinformatics, in which there is substantial uncertainty about what models or methods are 

appropriate. 

There is a natural division among structural inference methods between logical and 

statistical methods. Logical methods typically aim to model the structure in terms of deductive 

relationships, perhaps supplemented with various representations of one’s lack of precise 

knowledge about a situation. The methods often use various types of modal logic to help 

represent and infer uncertain possibilities. The most common use of logical machine learning 

methods is for inference from prior knowledge, where that prior knowledge encodes structural 

information about the particular domain. This chapter will focus more closely on statistical 

methods, which use larger amounts of data to infer structural relationships. Most of these 

methods use data to determine which variables are informationally relevant for which other ones, 

and then use the absence of such informational connections to develop simple-but-accurate 

models with significant predictive power.  

There is an obvious difference between the learning algorithms and the learned model. 

For example, some particular neural network (with connection weights, etc.) is a learned model; 

back-propagation is the algorithm by which the model is learned. Machine learning algorithms 

are a type of structural inference because the learning makes not intrinsic reference to the 

domain under study; in particular, the learning algorithm does not use (significant) semantic 

information about the variables. This observation leaves open the question of whether the learned 

model does have interesting semantic content. We will return to that question later in this 

chapter. In the meantime, however, it is important to bear the “learning algorithm vs. learned 

model” distinction in mind when thinking about these processes. 



A Rough Taxonomy of Machine Learning 

Suppose one has a dataset D: a collection of datapoints, each of which has measurements 

of the values of variables V for a particular individual or unit. There might be many 

complications with the dataset: the variable values might be imputed or inferred; it might not be 

obvious how to specify the variables or individuals; the datapoints might not be independent 

(e.g., if one has time series data); there might be unmeasured factors that influence variables in 

the dataset; and so on. In terms of developing a rough taxonomy of machine learning methods, 

these subtleties are largely irrelevant. That being said, essentially all machine learning methods 

assume that the situation is “well-posed” in various ways, such as using well-defined variables.  

At the coarsest level, machine learning algorithms can be divided into two classes (with a 

small middle ground) based on whether the algorithm requires the specification of a target 

variable in the dataset. Supervised learning algorithms assume that some variable X is designated 

as the target for prediction, explanation, or inference, and that the values of X in the dataset 

constitute the “ground truth” values for learning. That is, supervised learning algorithms use the 

known values of X to determine what should be learned. The most common type of supervised 

learning algorithm aims to develop a classification or categorization model: given information 

about various individuals and the categories to which they belong, the algorithm produces a 

learned model that can be used to predict the category membership of new individuals. For 

example, one might want to predict which widgets being produced in a factory are most likely to 

fail. If one has data on the performance of many different widgets as well as measurements of 

other relevant features, then one can use a machine learning algorithm to learn a model that will 

predict the performance of future widgets. Under the right conditions, classification algorithms 

can yield models that can make novel, warranted generalizations about the groups based on the 



inter-feature relationships. Classification algorithms can also be used for recognition or 

identification by classifying into a “category” with exactly one member. Examples of supervised 

learning algorithms include: learning algorithms for artificial neural networks, decision trees, and 

support vector machines; the many forms of regression; and most reinforcement learning 

methods. 

Unsupervised learning algorithms do not single out any particular variables as a target or 

focus, and so aim to provide a general characterization of the full dataset. Probably the most 

common use of unsupervised learning is in clustering algorithms: separating the various 

individuals into “natural” groups according to one or another metric. These algorithms will 

sometimes draw relatively arbitrary lines between individuals, but they can be quite effective at 

discovering groups when they actually exist. For example, one might measure people’s attitudes 

about various political issues, and then want to determine whether there are natural groups that 

can be defined by those beliefs. The output of a clustering algorithm can, in certain conditions, 

subsequently serve as the target variable for a supervised learning algorithm. It is typically quite 

difficult to validate the output or model from an unsupervised learning algorithm, precisely 

because one usually has no “ground truth” against which to compare the performance of the 

model. There is rarely a single correct, true way to cluster various individuals, only better and 

worse ways. Various methods for probability distribution or density estimation also fall under the 

heading of unsupervised learning.  

The standard view of learned models is that their semantic content is entirely statistical: 

connections between variables provide information that can be used for prediction, but no further 

semantic content¾for example, causal structure¾is thought to be attributable to these models. 

In recent years, however, there has been a significant surge of interest in recent years in machine 



learning algorithms that avoid the use of domain-specific assumptions, but produce learned 

models with rich semantic content. In particular, the learned models can be used to predict the 

future behavior or features given interventions or manipulations from outside of the system. 

These machine learning algorithms are typically unsupervised learning methods, although one 

often wants to learn the causal structure in order to affect or bring about a change in some 

particular variable. One might wonder how such causal inference is possible, given the 

completely standard maxim in the sciences and philosophy that “correlation is not causation.” 

Machine learning methods for causal discovery must make assumptions with some causal 

content, but they typically use only domain-general assumptions about the ways in which 

causation and correlation are connected. For example, the widely-discussed causal Markov 

assumption (e.g., Cartwright, 2002; Hausman & Woodward, 1999, 2004) asserts that a variable 

provides no information about its non-effects, if one already knows the values of the variable’s 

direct causes. This assumption has causal content, but at a very high level of generality. 

This type of causal learning is more difficult than purely statistical learning (e.g., 

clustering, classification, density estimation, function approximation) in which one is simply 

trying to find informational connections between the variables. Except in highly unusual 

circumstances, the set of causal relationships among some features will be a strict subset of the 

set of informational relationships. That is, (almost all) causal relationships are informational 

relationships, but not all statistical relationships are causal. Given this asymmetry in learnability 

for the different types of models, one might hope that statistical models could suffice for all 

interesting applications. Purely statistical information, though, is insufficient for prediction when 

the system changes, whether because of one’s actions or policies, or perhaps because the causal 

structure breaks in various way. One needs causal information to predict the likely effects of 



most interventions, policy decisions, or other exogenous changes in the system. We must 

sometimes tackle the harder learning problem. 

Machine learning algorithms must always try to find a balance between (i) complexity of 

the learned model, which provides increased accuracy in representing the input dataset; (ii) 

ability of the learned model to generalize to new data, which makes them informative about the 

world; and (iii) computational tractability of learning and using the model, which makes them 

practically useful. The complexity of the world will sometimes be greater than the complexity of 

the models that are practical for a particular situation, which suggests that no single model will 

be sufficient. One might hope that there are “sub-problems” that are not more complex than the 

available models. If that is the case, then one could plausibly learn more about the world by (a) 

determining the scope of the sub-problems; (b) learning an appropriate model (or models) for 

each sub-problem; and then (c) integrating the model outputs in a principled manner. Various 

“meta-learning” techniques implement this three-step proposal. As an illustration, consider the 

case of boosting (Freund, 1995; Schapire, 1990; and subsequent work) for simple binary 

classification: e.g., is this widget defective? Rather than trying to learn a complete model in one 

step, a boosting algorithm first learns a simple classification model that works reasonably well, 

though typically not as the user wants or requires. The system then extracts all of the cases for 

which this simple model makes an incorrect prediction, and learns a second classification model 

just for those cases. The outputs of those two models can be integrated in various ways to get a 

classifier for all of the cases. That unified classier will make incorrect predictions for other cases, 

and so one can learn a third classifier for those misclassified cases, integrate the new classifier 



into the unified one, and iterate.1 In this way, boosting builds a unified classifier consisting of a 

number of “weak” classifiers, each of which focuses accurate classification of a reduced subset 

of the data. Hierarchical models such as mixtures of experts (e.g., Jordan & Jacobs, 1994) 

function similarly. 

No overview of machine learning would be complete without a discussion of Bayesian 

learning. A Bayesian learning algorithm requires specification of a (possibly infinite) set of 

possible hypotheses or models, as well as a probability distribution¾the “prior probability 

distribution”¾over those hypotheses. When provided with data, the learning algorithm then uses 

Bayes’ Rule to determine the correct (by the probability calculus) probability distribution given 

that data. Bayesian reasoning captures the intuition that beliefs after observing some data should 

be given by the probability of each possible explanation given that data. Expressed in ordinary 

language, Bayes’ Rule states: the probability of a hypothesis after observing some data [P(H | 

D)] is equal to (i) the prior probability of the hypothesis [P(H)], multiplied by (ii) the likelihood 

of seeing data like that if the hypothesis actually were true [P(D | H)], divided by (iii) the 

probability of seeing that data in the first place [P(D)]. The idea that Bayesian learning is rational 

has a long philosophical history. Bayesianism had relatively little practical impact for many 

years, however, because of a simple fact: except in toy examples, the computations required for 

Bayesian learning quickly become too difficult to do analytically or by hand. The development 

of modern digital computers has made it possible to carry out or approximate Bayesian learning 

for more realistic situations, and so Bayesianism has (re-)emerged as a dominant theme in 

learning. Many machine learning algorithms can be viewed as implementing or approximating 

                                                
1 For technically minded readers, boosting techniques rarely focus on only the misclassified 
datapoints at each stage. Rather, the currently misclassified datapoints are simply weighted more 
heavily for training of the next classifier. 



Bayesian learning under various assumptions or constraints on the hypothesis space, prior 

probability distribution, likelihood functions, and so on. 

Scope and Limits of Machine Learning 

As with human learning, the value of machine learning is less in the output, and more in 

the way that the output can be used for future tasks: prediction, planning, classification, 

recognition, and so on. As a community, we know how to do quite a lot with machine learning. 

Machine learning is a large part of present-day computer science, and there are many different 

algorithms and techniques that are suitable for a wide range of conditions. For clustering, 

classification, and causal learning, there are of course algorithms for the simple situations: 

datasets containing all relevant variables, clean measurements, simple relationships (e.g., linear), 

and no missing datapoints. But there are also algorithms that are robust to variations along all of 

these dimensions: noisy data, unmeasured variables, complex relationships, missing data, sample 

selection bias, and so on. There are numerous success stories for each of these algorithms in 

terms of real-world applications. There are also algorithms for handling time series data, and in 

particular, for conducting systems monitoring and fault detection. There are quite powerful text 

and image classification algorithms that are highly specialized for these purposes (though they 

typically still fall short of human performance in accuracy). Information fusion¾the integration 

of information from multiple distinct sources¾has emerged more recently as a central 

component of real-world machine learning. 

At the same time, there are known theoretical limits to machine learning, many of which 

mirror the limits on human learning. For example, if the data are too noisy¾if they are 

essentially random¾then learning will be nearly impossible. Machine learning algorithms 

employ structural inference, and so if there are no patterns in the data, then there is nothing that 



can be inferred. Learning also requires some variation in the world, either between individuals, 

or between times, or between places. Machine learning algorithms cannot learn anything about a 

constant-valued feature, since there is nothing to learn: the constant feature is always the same. 

And although some situations are clearly easier for learning than others, learning is almost 

always difficult in the worst case. More precisely, essentially all interesting machine learning 

problems are sufficiently hard that they require (we think) an algorithm with exponentially many 

computational steps in the worst case.  

A more interesting constraint on machine learning is the inability, even under seemingly 

easy conditions, to infer features of the causal or informational structure of an individual from 

group-level measurements. Suppose that we want to learn something about the individual (e.g., 

how does education influence subsequent income?), but we only measure features at the group 

level (e.g., the averages in various groups of education, income, and other relevant variables). 

Further suppose that every individual has exactly the same type of underlying relationships 

(though not necessarily the same values), and the group-level features are simple, deterministic 

functions of the individual-level features (e.g., average or total value). Even under these strong 

simplifying assumptions, there are many interesting cases for which the informational 

relationships between the group-level features are not the same as the relationships among the 

corresponding individual-level features (Chu, Glymour, Scheines, & Spirtes, 2003). That is, the 

learned model for the group-level features is not necessarily the same as the model for the 

individual, even when every individual has the same model. This possibility raises a serious 

methodological challenge to the use of machine learning for domains in which individuals are 

the primary focus, but data collection principally occurs for groups (e.g., parts of economics, 

other social sciences, and bioinformatics). 



Philosophical Challenges to Machine Learning 

Machine learning is a major area of research in computer science and statistics, and so 

many, and perhaps almost all, of the most prominent problems in machine learning are 

computational and algorithmic (e.g., “what can one learn under certain conditions?” or “can this 

algorithm run faster?”), rather than necessarily philosophical. Even notions from machine 

learning that might appear philosophical often turn out to be less philosophical than one might 

have thought. As just one example, consider the so-called “No Free Lunch” theorems (e.g., 

Wolpert, 1996; Wolpert & Macready, 1997), which are sometimes colloquially stated as: 

“Algorithms are successful only when they are ‘tuned’ to their domain; there are no universal 

learning algorithms.” This phrasing suggests various philosophical arguments, but all trade on a 

misunderstanding of the actual theorems. For example, one might be tempted to argue that 

machine learning is pointless, since one might think that the no-free-lunch theorems imply that 

proper algorithm choice requires that one already know the underlying truth, which would 

obviate the need for any learning. This suggested argument fails to understand the sense in which 

no algorithm has an advantage over others. The No-Free-Lunch theorems are, in many ways, just 

a precise statement of the ancient skeptical observation that any future is consistent with the past. 

If any future is possible given the past observations, then no learning algorithm has any 

advantage over others. But one can now straightforwardly see that almost any restriction on the 

possibility space suffices to defeat the no-free-lunch theorems; for example, a single weak 

regularity assumption can suffice to define a “domain,” and so pick out a privileged class of 

superior algorithms. One certainly need not a priori know the actual, underlying truth.  

Of course, as with many bad arguments, there is a kernel of truth inside this suggested 

objection. Any interesting machine learning method makes assumptions about the nature of the 



world, and algorithms can readily fail if those assumptions turn out to be false. An important part 

of machine learning is to investigate whether the assumptions of one’s algorithm actually hold, at 

least approximately (e.g., by checking to see whether the data distribution is approximately 

Gaussian). Such tests are often missing from both the practice and rhetoric of machine learning. 

If the relevant assumptions are false, then one should turn to other methods that do not make 

those assumptions, even though those other methods will typically be correspondingly weaker. It 

is incorrect to think about machine learning as a “black box” that simply takes data as input and 

returns the truth. The practice of machine learning is instead much closer to the use of statistics 

in science: as a tool to investigate more precisely the structure of one’s data. The appropriate tool 

(i.e., machine learning algorithm) should be chosen for a particular task, and tools can be used 

with varying degrees of skill (e.g., by interpreting the output of the algorithm in various ways). 

One might hope for a sophisticated system that could take the input, determine the best algorithm 

for that type of data, and then apply the algorithm, but such a meta-learner currently remains 

largely a hope. 

One of the least-discussed “assumptions” of machine learning algorithms is that they all 

require one to provide well-specified variables with precise, possibly infinite, sets of values. The 

variables need not be numeric¾they can range over various categories, such as “large” and 

“small”¾but they must be clearly stated: in some sense, there must be some, possibly unknown, 

fact about the “true” value of each variable for each datapoint. Machine learning relies on 

structural inference, and so it must be possible to find patterns and structure within the data. It is 

not clear what it even means to talk about ‘structure’ among variables that are not well-defined. 

This concern is not a serious challenge in practice, as one is essentially always concerned with 

datasets that result from measurement processes that specify the variables; metaphysical realists 



of various types will also typically be untroubled by this concern. If, however, one questions 

whether there is any stable underlying structure to be measured, then machine learning will seem 

to be a futile enterprise. 

All of the observations in this section raise a natural question: if machine learning is 

roughly analogous to statistics, then in what sense is it “learning”? A more contentious framing 

would be: is the machine doing any learning, or is it really the human who uses the algorithm 

that learns? There are two different aspects to the “is it learning?” question: the first is a general 

philosophical concern, and the second points towards gaps in our understanding of cognition. 

The first concern was most famously presented by Searle (1980) using his Chinese Room, but 

has arisen in many different forms (e.g., Harnad, 1994). The argument starts with the general 

claim that computation involves only symbol manipulation while cognition involves something 

more. The ‘something more’ of cognition differs between authors, but is often some semantic 

notion (or “grounding” for concepts, or…). Symbol manipulation is then characterized as a 

purely syntactic notion: according to this argument, one can manipulate symbols correctly solely 

by examining features of the physical representation and without any understanding of the 

semantics or meaning of the symbol. The argument then concludes that computation cannot be 

cognition, as the former lacks any semantic content or grounding in the world while the latter 

necessarily has it.  

This argument is offered as a general one against the idea of “cognition as computation,” 

and machine learning is clearly a relevant type of computation. The successes of machine 

learning result from structural inference; these methods use patterns or statistical regularities in 

the data, and are (relatively speaking) indifferent to the semantics of the input variables. A more 

specific version of the previous argument would conclude that machine “learning” might be 



useful, but it cannot be true learning, at least in so far as true learning requires cognition. In other 

words, there might be some actual learning, but the human being who processes the machine 

“learning” output is the one who does it. The machine simply makes certain patterns in the data 

salient, though that might be a computationally non-trivial task. This is a serious objection to at 

least the title ‘machine learning’ for these algorithms, since this argument calls into question the 

use of all cognitive terms to refer to machine operations. However, this argument does not seem 

to provide any specific objection to machine learning in itself, but rather it applies to machine 

learning qua machine operation. That is, one’s particular response to (or acceptance of) this 

argument¾for example, appeal to some symbol grounding process, special causal powers of the 

brain, or rejection of some premise¾will arise from more general philosophical grounds, and not 

from some deeper reflection on the nature of machine learning in isolation. The overall objection 

is clearly relevant to machine learning, but it seems just as clear that any solution to it must take 

into consideration many issues that lie outside of the scope of machine learning. 

There is a more specific form of the “is this learning?” objection that does speak directly 

to machine learning. Insight and creativity are often held up as a central feature of human 

learning, if not the central feature. Our learning seems to depend at times on crucial intuitive 

leaps that we do not seem to be able to explain or predict. Introspectively, there seems to be 

something “non-algorithmic” about creative insight. Machine learning algorithms seem to offer 

no such capacity for insight, as they are “just” complex sequences of simple operations. The 

practice of machine learning inevitably involves some human element to specify and control the 

algorithm, test various assumptions, and interpret the algorithm output. These observations 

suggest the conclusion that machine learning is (again) not true learning at all, but rather fast, 

useful detection of various patterns in data. On this account, the human who controls and 



validates the algorithms does the “real” learning. This objection is notably different from the 

previous one: no claims are made here about the impossibility of machine cognition, but only 

about the failure of current machine learning algorithms to rise to the level of true learning. This 

objection is entirely consistent with the possibility that more sophisticated and reflective 

algorithms, supplemented with appropriate background knowledge, could perform real learning. 

The argument depends instead on the claim that none of the currently available algorithms meet 

that standard for true learning. 

The previous paragraph used the phrases ‘human learning’ and ‘true learning’ without 

exposition; the reader was simply assumed to understand what was intended by it. One might 

wonder, however, if our understanding of the nature of human learning is sufficiently clear to 

provide a standard of ‘true learning’ that machine learning fails to satisfy. There is no well-

established model for how people actually do learn, and so it is not clear what criteria would 

need to be met for a machine algorithm to be considered ‘learning.’ There is no question 

that¾for certain situations¾human learning is far superior to machine learning. Our ability to 

assemble disparate pieces of background knowledge and information, whether by analogy, 

accident, or some other process, is unmatched in machine learning (despite many attempts to 

build systems for common sense reasoning). That observation, however, is not sufficient to 

conclude that we use some wholly different process in our learning; one can only conclude that 

there is something different about our learning. A plausible alternative explanation is that we 

have a body of information, biases, and experiences that is quite simply unmatched by 

contemporary machine learning systems. A database with 10,000 datapoints is considered large 

in machine learning; a child who has only one experience per waking hour (roughly, sixteen per 

day) exceeds that number in less than two years. If she has one experience per waking minute, 



then she surpasses the database in around eleven days. The products of human learning are 

superior (in some sense) to the products of machine learning, but the processes need not be 

fundamentally different in kind, given that there are enormous differences in background 

knowledge, accuracy of biases, temporal and semantic information, and so on.  

Perhaps more importantly, there are substantial gaps in our understanding of the 

processes underlying human learning. We do not know enough about those processes to 

determine at this point their similarity¾or dissimilarity¾to the algorithms proposed in machine 

learning. One might respond that introspection on our own learning provides all of the evidence 

that is required. Such a response neglects the large psychological literature demonstrating the 

unreliability of introspection in revealing the details underlying fundamental cognitive processes 

(Nisbett & Wilson, 1977; Ross & Nisbett, 1991). It may well be the case that there is something 

qualitatively different about human learning such that machine “learning” algorithms do not 

deserve that name. At the current time, however, such claims are grounded largely in ignorance, 

rather than positive evidence of a difference. 

The preceding discussions have made a potentially problematic assumption: there is 

value in worrying about the particular label that is attached to machine learning algorithms. The 

fundamental properties of those algorithms¾their reliability, convergence, computational 

complexity, etc.¾are features of them regardless of the name one uses. Moreover, the 

algorithms are already referred to by many different names, such as ‘data mining’, ‘applied 

statistics’, ‘automated search’, and so on. One might thus be willing to give up the label of 

‘machine learning,’ since it does not obviously make a difference to the underlying science. One 

ought not give up on the label of ‘machine learning’ so easily, though, as the name points 

towards a number of interesting issues about the nature of cognition and learning, and the 



relevance of machine methods for the study of human cognition. Machine learning methods are 

regularly used today to provide frameworks and inspiration for cognitive models, sometimes 

under the heading of ‘computational cognitive science.’ The label is also important because it 

establishes biases and expectations in those who hear the label. Sometimes those expectations are 

unreasonable, but they prompt individuals¾both proponents and skeptics¾to ask important 

questions about the nature and performance of these algorithms. 

One final philosophical issue concerns the extent to which one can be a realist about the 

contents or intermediate processes of a learned model. That is, when can the internal structure or 

richer semantic content of a learned model be understood to correspond¾perhaps only with 

some probability¾to features of the world? This question is particularly pressing for research in 

causal learning that seeks to infer causal structure in the world from sets of passive observations. 

Causal inference algorithms putatively learn the set of causal structures that could have produced 

some given dataset, or discover the most probable such structure (Chickering, 2002; Pearl, 2000; 

Spirtes, et al., 1993). There are many instances in which these algorithms have been applied to 

actual datasets, and the learned models have subsequently been successfully attributed to the 

world (e.g., the case studies in Glymour & Cooper, 1999). These algorithms¾like all inference 

methods¾are only reliable under particular assumptions about the nature of the world. 

Moreover, the semantic content of the learned model¾the fact that we can call it a causal 

model¾derives from these assumptions, which provide a characterization of one (the?) way for 

causal structures to be “projected” into observed or experimental data. The analogy here is with 

assumptions such as the ray theory of light: those assumptions explain how three-dimensional 

objects are projected onto a two-dimensional plane (e.g., a retina), and are necessary for any 

visual system to make inferences about object structure from the limited, two-dimensional input. 



Just as our visual system experiences optical illusions when various assumptions fail to hold 

(e.g., a straight stick appearing bent when placed into water), causal inference algorithms are 

subject to “causal inference illusions” when the assumptions are violated in particular ways. 

These causal inference algorithms, and machine learning algorithms more generally, do 

not seem at this point to be any different from standard instances of inductive inference: no 

inductive inference can have any guarantees of reliability without various assumptions about the 

world. If those assumptions are satisfied, then the algorithms work; if they are violated, then one 

has no particular warrant to believe the internal structure of the algorithm outputs. The 

assumptions of causal inference algorithms are sometimes claimed to be different, however, 

because it seems that we can only test whether the assumptions are actually satisfied by having 

the very same causal knowledge that we are trying to learn (e.g., Cartwright, 1999, 2001). This 

argument is not focused on the bare possibility that the assumptions could be false (though that 

additional claim is also made in, e.g., Cartwright, 2001), since that is a risk that any inductive 

inference must carry. This concern is also not about the practical testability of the algorithms’ 

assumptions; inductive inference¾whether human or machine¾inevitably involves making 

assumptions that might not be practically testable at the particular moment. One might need, for 

example, orders of magnitude more data than one currently has. If the assumptions are testable in 

principle, though, then one could (in some sense) determine whether the algorithms are reliable 

for a situation like this one, and so have some warrant to regard the learned model in a realistic 

manner. 

The fundamental worry here is that the assumptions are not even testable in principle, 

since it seems that the only way to know which statistical tests are relevant is to know the 

underlying causal structure, but that is exactly what the causal inference algorithm is supposed to 



find. These algorithms might (the argument continues) occasionally find approximations to the 

true causal structure, but only because of pure random chance. The assumptions might be true in 

any particular situation, but one has no way to know that, and so no warrant to treat the algorithm 

outputs as anything other than representations of the observed or experimental data. The 

algorithms might produce a useful “shorthand” version of the data that one could use in various 

ways, but one is not (on this argument) learning anything substantive about the underlying 

structure of the world. Although principally directed at causal inference algorithms, this potential 

problem is not limited to them. Many clustering algorithms, for example, are reliable only if one 

can make certain assumptions about the underlying groups. One must thus be able to examine the 

groups to determine whether they have those properties, but that would require knowing the 

groups ahead of time, which would obviate the very need to use the clustering algorithm. 

Machine learning methods clearly have substantially less value if they must always be 

interpreted in an instrumentalist manner. Instrumentalist theories¾those that make predictions 

about the behavior of a system without making any commitments to the underlying structure or 

ontology of the theory¾are useful in a number of ways, but one often desires something more 

than mere prediction. Most notably, one must have information about the underlying 

mechanisms in order to make accurate predictions about what will happen when the system 

breaks or changes in various ways; instrumentalist theories provide no such information. 

There are three natural responses to this objection. First, careful examination of the 

assumptions often reveals that the knowledge required to test them is weaker than is suggested 

by the surface framing of the assumption. In the particular case of causal inference algorithms, 

one must have certain causal knowledge in order to test the assumptions, but the necessary 

knowledge is not the same as knowledge of the causal structure being sought. For example, one 



might need to know that a particular population is “causally homogenous” (i.e., all individuals 

have the same causal relations, though not necessarily the same values). This knowledge requires 

causal knowledge, but not necessarily about the causes or effects of that particular variable. The 

second, related, response notes that the argument frames the testability of assumptions as all-or-

nothing: one knows either exactly what is required to test an assumption (though one might not 

actually test it), or else nothing at all. A more realistic characterization of the situation is that one 

often knows some-but-not-all of the tests of an assumption, as well as a number of possible 

avenues for future tests. One might also have reason to believe that one has tested an assumption 

imperfectly. If one has this type of limited knowledge, then one can have limited confirmation of 

an assumption, while recognizing that the algorithm output must therefore be interpreted or 

accepted in a limited manner. One can object to many machine learning methods on the grounds 

that they require some strong, not completely established, property, but one ought not reject the 

output of those methods simply because one is somewhat uncertain in the short run about 

whether the precise property holds.  

The third and most general response to this family of objections is to note that the 

argument-schema actually speaks against most inductive methods, and not just causal inference; 

it objects to machine learning, not machine learning. Consider a particular inductive conclusion: 

“All electrons have negative charge.” Any method that conjectures this conclusion must make 

some assumptions about the world, such as that electrons form a coherent, stable set with respect 

to having some electric charge. Such an assumption can only be tested by actually determining 

the electric charges of all electrons, but such tests would eliminate the need to make any 

inference to the inductive conclusion. Notice that there was no mention of machine methods in 

this example, nor was there any specification beyond “inductive method.” The problem of 



knowing the confirmation conditions for the assumption of a method is a general one that speaks 

against almost all inductive inference methods, and not machine learning methods specifically. 

One can rarely know a priori all of the confirmation or testing conditions for assumptions that 

are required for a particular inference method to provide reliable information about internal or 

universal structure. 

Conclusion 

Machine learning methods are often regarded with a certain degree of suspicion. They are 

frequently presented as “black boxes” that take data and, without any guidance, somehow learn 

part of the true structure of the world. These algorithms are, in practice, much less mysterious: 

the label of ‘automated statistics’ is frequently an apt descriptor. Machine learning methods 

discover and exploit structural relations among the data, and this structural inference underlies 

both the strengths and weaknesses of machine learning algorithms. These methods can be 

applied in a relatively domain-general manner, since the specific meaning of the variables is 

irrelevant to the functioning of the algorithm. Because of this generality, however, they cannot 

yield domain-specific information, such as mechanisms underlying informational relationships. 

Machine learning is one of the most rapidly growing areas of computer science, and many of the 

most prominent challenges revolve around the development and improvement of algorithms for 

learning novel types of models, or under various assumptions. There are philosophical concerns 

about machine learning, but most of those concerns center on either the ‘machine’ or the 

‘learning’ part. On the one side, machine learning is an instance of complex machine 

computation, and so natural questions arise about whether any machine operations can be 

correctly described using cognitive terms. On the other side, machine learning algorithms 

perform complex, but clearly specified, sequences of computations, and so questions arise about 



whether the methods qualify as ‘learning,’ or whether the assumptions necessary for the 

inductive inference can be suitably tested. In sum, machine learning methods have opened novel 

avenues for learning about the structure and behavior of our world. These algorithms must of 

course be used with appropriate awareness and testing of the underlying assumptions. When used 

properly, however, machine learning can exploit the structure within data to yield valuable 

knowledge about structure and relations in the world. 
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For the more specific case of causal reasoning methods, as well as their applicability to 

traditional philosophical problems such as the nature of counterfactuals, a good introduction is: 

Pearl, Judea 2000. Causality: Models, Reasoning, and Inference. Cambridge: Cambridge 

University Press. 

 


