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Abstract Many approaches to evidence amalgamation focus on relatively static infor-
mation or evidence: the data to be amalgamated involve different variables, contexts,
or experiments, but not measurements over extended periods of time. However, much
of scientific inquiry focuses on dynamical systems; the system’s behavior over time is
critical. Moreover, novel problems of evidence amalgamation arise in these contexts.
First, data can be collected at different measurement timescales, where potentially
none of them correspond to the underlying system’s causal timescale. Second, miss-
ing variables have a significantly different impact on time series measurements than
they do in the traditional static setting; in particular, they make causal and structural
inference much more difficult. In this paper, we argue that amalgamation should pro-
ceed by integrating causal knowledge, rather than at the level of “raw” evidence. We
defend this claim by first outlining both of these problems, and then showing that they
can be solved only if we operate on causal structures. We therefore must use causal
discovery methods that are reliable given these problems. Such methods do exist, but
their successful application requires careful consideration of the problems that we
highlight.
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1 Learning about dynamics

Present-day science proceeds through a division of cognitive and laboratory labor:
no one individual, or even research group, can fully address scientific problems of
any significant size. Instead, modern sciences operate through widespread “divide-
and-conquer,” where the divisions might be based on domain, method, or question.
This distributed effort inevitably leads to integration challenges, as we aim to bring
together different data and theories into relatively coherent pictures of the world. As
a result, philosophers of science and epistemologists have recently taken a renewed
interest in these types of integration and amalgamation challenges (e.g., Danks 2005;
Mayo-Wilson 2014; Cartwright 1999; Stegenga 2011): how can or should we combine
similar, overlapping, or related scientific claims and evidence into a unified whole (or
small set of possible wholes)?

In this paper, we concentrate on a relatively under-explored setting for integra-
tion and amalgamation challenges—namely, discovery and confirmation of models
of dynamical systems (broadly understood) using time series data. Many scientific
investigations aim to understand a system that dynamically changes over time, such as
neural processes in the brain, transactions between firms in an economy, long-range
climatic teleconnections involving ocean indices (e.g., El Nifio), or students’ knowl-
edge development in an online course. In all of these cases, we have observations
of the system (or multiple systems of the same type) as it changes over time. Since
these systems are complex and important, we often have multiple research groups or
measurement methods, resulting in multiple time series datasets that must somehow
be amalgamated together to yield a coherent model of the interactions among the
underlying system elements.

An additional desideratum for much of this scientific research is to learn causal
models of the underlying dynamical systems. For many (though not all) of these
systems, we want to not only predict their behavior, but also design effective
interventions—actions, policies, modifications, and so forth—to control them and
achieve relevant goals. Knowledge that A predicts B is not sufficient to know whether
an exogenous change in A (e.g., by us) will yield a corresponding change in B; instead,
we require causal knowledge. Thus, our amalgamation methods should ideally be capa-
ble of identifying, discovering, or working with underlying causal structures, and not
only phenomenological or measurement-level characterizations of the various time
series datasets.

However, this desire for causal models raises two novel problems for evidence
amalgamation in the time series setting. First, the measurements in different time
series are often undersampled relative to the “true” timescale of the underlying causal
dynamics. Our measurement methods sometimes cannot capture the system state at
the speed with which it actually changes, whether for technical, financial, or ethical
reasons. As a concrete example, consider efforts to learn causal and communication
structures within human brains. While we do not know the exact causal timescale of
the brain, it is surely faster than the & 2000 ms time between measurements in (stan-
dard) fMRI experiments. Our time series data about any particular brain includes only
some of the causally relevant timepoints and changes, which significantly complicates
inference. Moreover, in many cases, we do not know the extent of undersampling, nor
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do all measurement methods undersample to the same degree. Undersampling—more
generally, a mismatch between the underlying causal timescale and the various mea-
surement timescales—is a significant novel challenge to integration and amalgamation
that arises only for time series.

Second, our time series measurements frequently include only a subset of the
causally significant variables (for the system). For example, there might be some unob-
served common causes of measured features. The possibility of latent common causes,
and latent variables more generally, is a well-known problem for causal inference. The
problem is significantly exacerbated for dynamical causal systems. Latent variables
in “static” settings typically introduce only local complications in the observed joint
probability distribution or density; their impact is rarely global.! In contrast, latent
variables in dynamical systems typically create complexities throughout the observa-
tional data; the impact is almost always global.? In addition, additional types of latent
variables present problems for inference, amalgamation, and integration in dynamical
settings. For example, suppose we have X — L — Z, but where L is unobserved.
In the static setting, L is unproblematic: it is an unobserved mediator, but does not
cause inferential problems. In contrast, in the dynamical setting, L makes inference
and amalgamation much harder (as we will see in Sect. 3).

Overall, both of these challenges pose serious threats to the very possibility of causal
structure learning from diverse, observed time series data. Evidence amalgamation is
qualitatively different (and harder) in the dynamical, time series domain. The argu-
ments in this paper are guided by the overarching idea that we can best address these
amalgamation challenges by integrating “local” causal knowledge, rather than trying
to amalgamate the data or evidence directly. Of course, such an approach requires
that we have reliable methods for causal structure discovery given these types of data,
and the above two problems make such discovery significantly harder. Matters are not
hopeless, however, as suitable methods given these challenges have recently emerged.
In the remainder of this paper, we examine these problems in more detail: undersam-
pling and timescale mismatch (Sect. 2) and latent, unobserved variables (Sect. 3). For
clarity, we will largely avoid technical or mathematical details (except when neces-
sary), but we emphasize that everything discussed here can be represented precisely
and formally.

2 The challenge of multiple timescales
2.1 Timescales and their mismatch
One set of amalgamation challenges arises from discrepancies in the relevant

“timescales” (i.e., rates at which things happen). As a simple example, consider an
experiment in which we measure the temperature at the same location at 12:00 noon

1 We will be more precise about this claim in Sect. 3.

2 The two exceptions are (1) a constant-valued (and so not really variable) latent; and (2) a latent that is a
cause of only one other variable (including its own future state) at each moment in time (and so essentially
functions as an additional source of noise).
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every day. The “measurement timescale” for this experiment is once per day, as that
is the rate at which we measure the state of the world. More generally, almost all
experiments have a measurement timescale that corresponds to the rate at which the
experimenters (or their devices) make measurements of the world. There are numerous
potential complications here, as different devices might measure at different rates, or
some measurements might be triggered by external events rather than occurring on
a regular schedule. However, if we allow our dataset to have missing measurements,
then we can essentially always establish a measurement timescale for an experiment.?

We can also sensibly think about a “causal timescale” for a system, as different
causal processes can require different lengths of time to occur or progress. As a very
rough characterization, the timescale for a causal connection C — E can be under-
stood as the length of time it takes for an exogenous change in C to (start to) influence E.
For example, economic demand for a product does not immediately change the supply
of that product; the causal influence takes time to propagate. Moreover, that timescale
is different (and significantly faster) than the causal timescale at which increases in
atmospheric carbon dioxide influence global climate. Different systems exhibit dif-
ferent causal timescales.* Of course, we often do not know the causal timescale of a
system; discovery of the causal timescale is frequently part of our scientific investiga-
tions.

One might immediately object that ‘causal timescale’ implies an inappropriate
discretization of time or the causal “flows”: the worry is that if causal influence occurs
continuously in time, then the only possible causal timescale would be “infinitely fast”
(which would be scientifically unusable). At the very least, though, all causal influences
take some time to propagate, and so there must be some bound on the causal timescale
(perhaps derivable from the spatial separation of the relata).” This “propagation time”
thus provides a non-zero lower bound for the time it takes an exogenous change to
have an influence (i.e., how we characterized ‘causal timescale’). Moreover, as long as
the system variation is not infinitely quick, we can use the Nyquist—-Shannon sampling
theorem to determine a discrete, effective (causal) sampling rate.® More generally, the
vast majority of scientifically interesting causal relations take time to occur, and so
we can safely understand a system as having a causal timescale, particularly since we
make no assumptions about our knowledge of that causal timescale, or our ability to
measure at it.

Now consider the problem of evidence amalgamation from multiple experiments
on a dynamical system. In practice, these experiments will typically involve different
measurement timescales, and so we cannot simply merge the data, even if we ignore all
of the challenges that arise from different measurement methods, different populations,

3 For example, suppose device D measures once every two seconds, and device D> once per three seconds.
In this case, the measurement timescale is every one second, but with numerous missing values (e.g., D
missing values in every other timestep).

4 And different causal relations within a system can have different timescales. In general, we assume that
the causal timescale of a system is the greatest common divisor of the timescales of the causal relations
within the system.

5 And perhaps time truly is discretized at fine scales (Shapere and Wilczek 2012; Ambjorn et al. 2009).

6 Thanks to an anonymous reviewer for suggesting this idea.
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and so forth. However, these experiments all (supposedly) measure the same type of
causal system, so we might instead attempt to merge the experiments by examining
what they tell us about the underlying causal system. That is, rather than trying to merge
the data, we could try to merge the results or implications of the data about the target
causal system. The measurement timescales might differ between experiments, but
the causal timescale presumably does not. Thus, amalgamation of causal knowledge
sidesteps some challenges that (naive) evidence amalgamation faces.

This intuition is a sensible one, but it faces a significant inferential challenge. Most
existing algorithms that learn causal structure from time series assume that the mea-
surement timescale is approximately equal to the relevant causal timescale. However,
this assumption is violated in many experiments. For example, in fMRI experiments,
the measurements are significantly slower than the relevant causal relations, whether
because hemodynamics are slow relative to neuronal causes, or because data acqui-
sition is slow relative to artifacts such as cardiac signals.7 Moreover, the failure of
the assumption of “same timescale” matters: these existing inference methods can be
completely unreliable even if all other assumptions are satisfied (Seth et al. 2013).
Every type of error is possible: missing causes (false negatives), incorrect inferences
of causation (false positives), and reversed causal direction.

As a practical example of these issues, consider learning brain network structure
using magnetoencephalography (MEG) data (timescale: measurement each 1 ms) and
fMRI data (timescale: every 2000 ms). In this case, many of the traditional evidence
amalgamation concerns can be avoided by collecting these data from the same human
subjects in the same experimental paradigm under similar conditions (Plis et al. 2011).
Nonetheless, the different measurement timescales pose a problem for data integra-
tion. One might hope to amalgamate data of this type at the measurement level, but the
MEG and fMRI connectivity graphs inferred from their respective types of data are
quite different. Even high-level network properties change depending on the sampling
rate (Plis et al. 2011), even though both measurement processes are measuring signals
that are arguably caused by the very same underlying neural activity (Logothetis and
Wandell 2004). The intuitive idea that we should amalgamate at the level of inferred
causal structure does not work, precisely because the violation of the “same timescale”
assumption means that the inference algorithms are unreliable. Of course, there might
be many reasons for the different inferred “causal” structures at the respective mea-
surement timescales, as fMRI and MEG do not actually measure exactly the same
sources. However, similar (inferred) structure variation as a function of sampling rate
and speed has also been found across resting state fMRI experiments that all use the
same modality (Boubela et al. 2014; Lewis et al. 2016; see McCaffrey and Danks
(in press) for additional concerns about structural inference from resting state fMRI
data).

In general, the strategy of amalgamating causal knowledge will avoid many evi-
dence amalgamation problems, but only if the causal inference methods are reliable,
which they are not given existing measurement methods. And if the causal outputs

7 Event-related fMRI designs can potentially get much tighter temporal resolution, though only under
significantly stronger assumptions.

8 Thanks to an anonymous reviewer for noting that similar phenomena occur with resting state fMRI data.
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“learned” from different experiments are unreliable, then our amalgamation will be
“garbage in, garbage out.” Instead, we require inferential methods that can learn causal
timescale information from data obtained at a different measurement timescale. We
describe several such methods below, but we first explain (in more precise detail) why
causal inference is challenging when the measurement and causal timescales differ.

2.2 From causal timescale to measurement timescale

Formally, we represent causal structures as causal graphical models, which have been
used to represent causal systems in a wide variety of domains. Dynamic Bayesian net-
works (Murphy 2002; Eichler 2006) are perhaps the best-known of these dynamical
causal graphs, though they are not the only type. For our present purposes, we only
need the idea that causation is represented by directed arrows: X — Y means that
X is a direct cause of Y (given the other variables in the causal graph), where ‘direct
cause’ is understood instrumentally as “there are conditions in which an exogenous
change to X will probabilistically lead to a change in Y, even when all other vari-
ables in the graph are held fixed” (see Woodward 2003 for a careful explication of
this intuition). Causal graphical models are significantly more complicated than this,
but the inferential impact of timescale mismatch can be explained with this simple
characterization.’

We explicitly model time in our causal graph by including nodes for random vari-
ables V at both times 7 and 7 + 1 (see left-most graph in Fig. 1). For convenience, we
assume that our causal system is Markov order one, which means that no direct causal
influence requires more than one timestep to propagate. We emphasize, though, that
everything we say here generalizes to Markov orders greater than one. We also assume
that there are no isochronal edges (i.e., no causal connections between variables at the
same moment) at the causal timescale, though of course there might be such (appar-
ent) connections at the measurement timescale.!” We denote this dynamical causal
graph (at the causal timescale) by G'; for causal graphs, superscripts will denote the
undersampling rate, where 1 means “no undersampling.”

We are principally concerned with undersampling: situations in which the mea-
surement timescale is significantly slower than the causal timescale. More precisely,
we model undersampling as missing values for measurements (for every variable) at
particular times. For example, if the measurement timescale is twice as slow as the
causal timescale, then we fail to record every other (causal) timestep. Figure 1 shows
the apparent structural changes in G' as the degree of undersampling (denoted by
u) increases.'! As Fig. 1 shows, the apparent structure at the measurement timescale
can be quite different from the actual causal structure at ¥ = 1. Thus, we cannot

9 Readers interested in the full framework of causal graphical models are encouraged to consult one of the
many mathematical introductions on the topic (Pearl 2000; Spirtes et al. 2001; Koller and Friedman 2009).
10 These two assumptions are often made in scientific practice, e.g., in neuroimaging (Zheng and Rajapakse
2006; Rajapakse and Zhou 2007; Burge et al. 2009; Kim et al. 2008; Li et al. 2008).

1 For clarity, we omit the additional edges that represent connections due to common causes that are
unobserved due to undersampling. For example, if # = 2, then 1 and 2 at the second (measurement)
timestep have an unobserved common cause—namely, 1 at the previous (unmeasured) timestep.
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Fig. 1 Undersampling effect on a dynamical causal graph. Superscripts denote measurement time index;
subscripts denote causal time index; u is the degree of undersampling
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amalgamate causal knowledge if we use methods that assume sameness of causal and
measurement timescales, as those methods can yield quite different outputs, simply
because of undersampling.

In fact, we can be much more precise about the nature and prevalence of errors due
to undersampling. For convenience, we shift to representing dynamical causal graphs
in terms of compressed graphs that encode time implicitly in the edges: (i) X — Y
means X! — Y'*1: and (ii) X < ¥ means X't! « L’ — Y'*! for some variable
L. Figure 2 shows a dynamical causal graph and its compressed counterpart. For our
problem space, these two representations are provably equivalent: there is a 1 — 1
mapping between dynamical causal graphs and compressed graphs (Danks and Plis
2013).

The general observation that undersampling can lead to unreliable causal learn-
ing has been made by other researchers (Seth et al. 2013), but there are methods to
determine, in an efficient manner, exactly which causal timescale causal relationships
will be hidden given undersampling, and which indirect connections will appear to be
direct (Danks and Plis 2013). In general, undersampling leads to causal paths com-
posed of multiple edges appearing to be direct causal connections. For example, if
the undersampling rate is # = 3, then X; — X» — X3 — X4 in G! will mani-
fest as X; — X4 in G3. This type of reasoning can be generalized to prove results
about the impacts of undersampling. As one instance, if G! (in its compressed form)
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bidirected edges
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@1/.:/9

8
Fig.3 Limiting behavior of apparent causal structure for causal time scale interactions described by directed
acyclic graphs that allow loops of length one

is a directed acyclic graph—that is, there are no causal cycles over time (not even
self-loops)—then the resulting upper bound on the length of causal paths implies that
increases in undersampling lead to monotonic reductions in the number of (apparent)
between-time causal connections (see top two rows of Fig. 3).

More generally, the determining factor for the effect of undersampling is the graph-
ical structure of the strongly connected components (SCCs)—maximal sets of nodes
such that each node can be reached from any other. Node membership in SCCs is
invariant given undersampling (under a weak additional condition); that is, feedback
groups are not broken apart by undersampling, though the particular order or arrange-
ment of variables in the feedback loops can change (Danks and Plis 2013). In particular,
as u — o0, the SCC will either converge to a stable graph for all u > ucopverge (s€€
Fig. 4), or will settle into a periodic “oscillation” across a set of graphs. This SCC
behavior is determined by its internal structure,'? and is immediately derivable from
the structure of G'. More generally, for a given causal timescale causal graph, one can
provably determine its apparent changes given undersampling of particular degrees,
or even given only information about the direction of change in undersampling (Danks
and Plis 2013).

12 Specifically, if the greatest common divisor of the lengths of the simple loops in the SCC is 1, then it
will converge; otherwise, it will oscillate.
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Fig. 4 A strongly connected component at a certain undersampling rate may appear as fully connected
with all possible edges present

2.3 From measurement timescale to causal timescale

These results about changes in the causal graph due to undersampling can be used to
support the opposite inference: given a measurement timescale graph H, we can ask
which causal timescale graphs could have produced it. And in so doing, we can obtain
exactly the content required for amalgamation of causal knowledge about the dynam-
ical system. Of course, this inference can be quite difficult due to underdetermination:
there will sometimes be multiple G' that “look like”  given some undersampling.
Nonetheless, there are algorithms that infer causal timescale structure from measure-
ment timescale data, given either known or unknown undersample rate.

Mesochronal Structure Learning (MSL) algorithms assume the undersampling rate u is
known, and then learn the set of possible underlying G' such that G* = . In particular,
if u is known, then we know that each measurement timescale edge corresponds to a
path with u edges in the underlying causal structure. For example, if u = 2, then each
edge in H corresponds to a two-edge path in G'. The MSL algorithms sequentially
determine the intermediate nodes in each of those u-edge G! paths, thereby producing
the G's that exactly capture the causal connections in . Computational efficiency
is achieved by intelligently pruning the search tree branches during search. Several
different versions of MSL have been developed using different search procedures, and
all are provably correct, complete, and reliable (Plis et al. 2015b).

Interestingly, simulations with the MSL algorithms demonstrated that, for rea-
sonably sparse H, there were typically few, and perhaps only one, G' that could
have generated it. This finding suggests that the learning problem is not intractable,
as significant causal timescale structure can often be recovered from measurement
timescale data. Even when more than one G! is possible, there are usually sufficiently
few that domain experts can examine the possibilities directly. There are no known
computational complexity results for the full “causal inference from undersampled
data” problem, though it is likely to be NP-hard. Causal timescale structure discov-
ery given a measurement timescale structure is known to be NP-complete if one uses
only directed edges in H (Hyttinen et al. 2016, in press); it is unknown whether the
bidirected edges in H make discovery easier or harder. In practical terms, the MSL
algorithms can (as of 2017) handle graphs with up to 70 variables when u and the
graph density are small, and correspondingly smaller numbers of variables as u or the
graph density increases (Hyttinen et al. 2016, in press). However, the MSL algorithms
require the significant assumption that the undersampling rate u is known. In practice,
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we often do not know the exact timescale mismatch between the measurement and
causal timescales. Furthermore, if we are trying to amalgamate different datasets, then
the timescale mismatches may be different for each dataset.

Rate Agnostic Structure Learning (RASL) algorithms drop this key assumption of the
MSL algorithms; they do not assume that u is known. More precisely, for a given
measurement timescale graph H, define [H], the undersampling equivalence class of
H, to be the set containing every G! for which there is some u (not necessarily the
same for each G1) such that G* = H. That is, [H] contains all of the G ! that could
look like H given some degree of undersampling. The RASL algorithms iteratively
construct the elements of [] by gradually adding possible edges to candidate graphs
and checking whether the candidate graph conflicts with 7.!3 If they do conflict, then
(provably) no super-graph of that candidate can be in 1], so we do not need to search
further along that branch. This single test significantly reduces the search space, and
makes the RASL algorithms computationally feasible.

Different RASL algorithms result from different schemata for iteratively adding-
and-testing candidate edges or loops, where runtimes depend strongly on the method;
one version could be more than 1000 times faster than another. All of these RASL algo-
rithms are provably correct, complete, and reliable. They demonstrate that timescale
mismatch is not an insurmountable problem: given measurement timescale data, we
can frequently learn a substantial amount about the causal timescale system, even
when the two timescales diverge to an unknown degree (Plis et al. 2015a).

The RASL algorithms are the first inverse inference algorithms for unknown under-
sampling, and they are approaching usability for actual scientific problems. RASL is
lower-bounded in computational complexity by the MSL algorithms, so is also likely
(at least) NP-hard. The fastest RASL algorithms can (as of 2017) be applied to datasets
with around 10 variables. While this might seem like a small number, that is approxi-
mately the number of regions of interest (ROIs) in many neuroimaging experiments,
and multiple other scientific contexts also deal with comparable numbers of vari-
ables of interest. Current versions of RASL are non-parametric—the algorithm takes
a measurement timescale graph as an input, rather than “raw” data—and so one key
research challenge is to develop methods that better estimate that input graph, as well
as exploit the specific parametric and dynamical properties in a particular domain
(e.g., measurement characteristics of different neuroimaging modalities).

At a high level, the MSL and RASL algorithms can be transformed into multi-
measurement timescale variants by “post-processing” their outputs: the only possible
G! are those that are possible for each dataset separately. That is, we can (in theory)
straighforwardly amalgamate the causal information produced by these algorithms, as
the outputs are all at the same timescale—namely, the causal one. In practice, however,
the amalgamation is rarely this easy. The simple intersection of output sets will often
be empty, as there may be no G! that is maximally consistent with each individual
dataset. An open research question is how best to perform amalgamation of causal
structures in these cases to yield scientifically useful multi-timescale versions of the
MSL and RASL algorithms. This work is particularly challenging for RASL, as it

13 Technically, a conflict occurs between candidate G ! and ‘H when Yu{G" Q H}.
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generally' yields larger—sometimes, much larger—output sets than MSL (Plis et al.
2015a,b), but is also often the more appropriate algorithm (e.g., if we know only the
relative sampling rates of the measurement methods).

Other methods have recently been developed to infer causal structure even in the
presence of undersampling or timescale mismatch. For example, non-parametric meth-
ods have been extended to use modern constraint satisfaction problem solving tools, as
well as answer set programming (Hyttinen et al. 2016, in press). Alternatively, earlier
parametric approaches (Silvestrini and Veredas 2008) have been recently revived to try
to directly estimate the (linear) causal strengths as the causal timescale, both for fixed
u (Gong et al. 2015) and mixed undersampling rates (Tank et al. 2016). Timescale mis-
match is thus a potentially tractable challenge for amalgamation of causal structure.
Unfortunately, it is not the only distinct issue for dynamical or time series evidence.

3 The challenge of latent variables
3.1 Latent variables and causal inference

A different type of amalgamation challenge arises when variables are measured in only
some experiments or datasets, as we can get seemingly conflicting results depending
on exactly what we do (or don’t) include. As a concrete example, suppose that dataset
D measures {X, Y, A}, D, measures {X, Y, B}, and D3 measures {X, Y, C}. Further
suppose we use regression to try to learn from our data, and we find a zero'> regression
coefficient between X and Y in Dj and D3, but a significantly non-zero coefficient
for D,.'® How should we amalgamate this evidence (assuming we do not have unique
identifiers for each individual)? It is well-known that different causal inferences are
licensed from the same data, depending on whether latent (or unobserved) variables
are possible (Glymour et al. 1997). And for these three datasets, unobserved variables
for each D are not merely possible, but rather are known: for example, we know that B
and C are not measured in D;. Thus, we face a significant challenge in amalgamating
the evidence in Dy, D,, and D3.

As with the case of mismatched timescales, we can potentially sidestep many of
these issues by instead amalgamating at the level of causal or structural knowledge.
That is, if we can determine the causal structure underlying each dataset, then we
can amalgamate this information by finding the “global” structures that could have
produced these local datasets. This strategy has been pursued for static data (i.e., non-
time series) in the Integration of Overlapping Networks (ION) (Danks 2002, 2005;
Tillman et al. 2009) and Integration of Overlapping Datasets (IOD) (Tillman and
Spirtes 2011) algorithms.

The ION and IOD algorithms reliably, correctly, and efficiently learn the “global”
causal structures (i.e., over all measured variables) that are consistent with the “local”

14 The RASL output always contains at least as many graphs as the MSL output, as the latter considers
only a single u. In practice, though, their output sets are frequently equal.

15 More precisely, not statistically significant from zero.

16 This would happen if, e.g., the underlying causal structure is: X — C — B < A < Y.
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causal structures inferred from particular datasets. These algorithms can work directly
on the local data (IOD), or include prior expert knowledge about the (plausible) local
causal structures (ION). As an abstract, toy example, suppose we discover causal
structures for two different datasets: from Dy, we find X — Y <« Z; from D,, we
find Y — A <« B. Now consider whether there is a causal connection between, say,
B and Z. If B — Z (in the global structure), then B would be an indirect cause
of Y (in the global structure) since we would have B — Z — Y. The absence of
B — Y in the local structure for D, means that B is not an indirect cause of Y, so we
cannot have B — Z in the global structure. Similarly, if B < Z or B < Z (i.e., a
globally unobserved common cause of the two), then there would be a common cause
of Y and B (that is unobserved in D), which contradicts our previous local learning.
Thus, we can conclude that there cannot be any direct causal connection between B
and Z, even though we never collected a (local) dataset that contains both. This toy
example shows how to infer absence of causal connection, but other local structure
patterns can imply definite presence of connections. For example, suppose D1 implies
X — A — Y;and Dy implies X — B — Y. The first graph says that every path from
X to Y includes A; the second graph says that every such path flows through B. The
only two possible graphs that satisfy both path constraints are: X - A - B — Y
and X - B — A — Y. Thus, the local structures jointly imply that there must be
an A—B causal connection, either A — B or A < B. With additional background
assumptions, more identification of global causal structure might be possible from the
local structures.

The ION and IOD algorithms can be quite powerful, though they still face underde-
termination challenges (Mayo-Wilson 2014). Moreover, much of their power comes
precisely because they do not bother (much!”) with amalgamating the evidence
directly. Instead, they focus on integrating or amalgamating the causal knowledge
that we extract from the evidence. That latter content, as well as the algorithms them-
selves, can represent the possibility of latent or unobserved variables, and so they are
not affected in the same way by those latents. They do, however, depend on our ability
to extract this causal knowledge in the first place, and that challenge is significantly
greater for dynamical systems.

Suppose that we are studying a non-dynamical system where the underlying causal
structure is A — L — B, but we do not observe L. This case presents no particular
causal inference challenges: a causal output of the form A — B always allows for the
possibility of an unobserved mediator in that causal connection. Now suppose we have
exactly the same structure, but in a dynamical (compressed) graph, and where each
variable has a self-loop (i.e., causes itself in the next timestep). Recall that these arrows
implicitly encode temporal lag, so this graph represents A’~! — L and L'~! — B'.
In this case, L presents a serious challenge, as the system is no longer Markov order
one. Instead, values of A arbitrarily far back in the past can appear to “directly” cause
the current state of B, as there are paths of the form A’ —k _oprktl
L'~" — B' in which every mediating variable is unobserved.

17 10D actually does perform a type of limited evidence amalgamation.
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The possibility of latent variables in a dynamical system creates novel statistical
challenges. For example, an infinite Markov order means that variables arbitrarily
far in the past are direct (relative to the measured variables) causes of variables in
the current timestep. Our finite sample data obviously do not extend arbitrarily far
back in time, though, so we cannot directly test for infinite Markov order. Instead,
we must make an inductive leap at some point. A different statistical challenge arises
for these “long-distance” connections, as they can become quite weak (though still
non-zero). In general, the correlation between A and B induced by paths of the form
A~k 5 pr=k+l o .. =1 5 B will decrease as k increases. Thus, for finite
sample data, we might not be able to detect the presence of this path, regardless of
the particular statistical method that we use, and so might not accurately estimate the
Markov order.

The possibility of latent variables also leads to much greater underdetermination
worries in the dynamical setting, as there will typically be a huge number of ways
to add latent variables in order to save the phenomena. Consider the simple case
of a measurement graph in which A’ is directly caused by A’=2, A" A'=6 .
One possibility—in fact, the one with the fewest unobserved variables—is the causal
graph A =2 B = C, where no variables have self-loops. However, there are many
other causal graphs that explain these measurements; for example, perhaps the true
causal graph has multiple causal loops involving A that just happen to be of length
2,4,6,.... Any causal inference method for time series data (with the possibility
of latent variables) must address both statistical and theoretical/underdetermination
challenges, and so amalgamation via causal information must also confront these
issues. For reasons of space, we do not consider the statistical issues, but we turn now
to the theoretical underdetermination challenges.

3.2 From measured variables to “simplest” causal strutures

The underdetermination challenges for causal inference from time series data are
significantly harder than for static data. Suppose that we have a dynamical causal
graph Gy, over a large set of variables V U L. There are computationally efficient
methods (Davis et al. 2015) for determining the implied dynamic causal graph Gy
that represents the causal relations between variables only in V. We will refer to Gy
as a reduction of Gyyr; in the other direction, we call Gyuy, an extension of Gy.
For example, if we start with the dynamic causal graph A — B — C (where we
drop temporal superscripts when the edges take one timestep), then we can reduce
it to A”"2 — C. Alternately, if we start with X’~3 — ¥, then we can extend it to
X — L1 — Ly — Y.One final notational piece will be helpful: rather than including
an edge for every past cause, we simply associate with each X — Y a set containing
the “lags” for which there is an apparent direct causal connection. For example, if
X3 — Y and X'~2 — Y, then we will write X — Y with the associated set {2, 3}.
These associated sets are the edge lag sets for a particular edge.

The underdetermination problem can now be stated more precisely: if Gy has at
least one edge lag set with infinitely many elements, then there are infinitely many
extensions of Gy. Moreover, if there are latent variables, then it is quite easy to get an
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edge lag set with infinitely many elements. For example, if any of the latent variables
has a self-loop (i.e., L' -t ), then the antecedent will be satisfied. And in all of
those cases, there will be infinitely many ways to extending Gy to yield a dynamical
causal graph over V U L that implies exactly the observed causal connections over
V.IS

One option in the face of this extreme underdetermination is simply to embrace it:
we could provide a characterization of those infinitely many extensions, and then say no
more. A different option, and the one that we consider here, is to prefer the “simplest”
dynamical causal graph extension, understood as the Markov order one graph that
postulates the fewest number of unobserved variables. Of course, this preference might
be incorrect; perhaps the world really is more complex than is required to explain the
data. However, in the absence of additional domain knowledge, we contend that this
use of Ockham’s Razor—postulate as few additional variables as necessary to explain
the observed data—is a reasonable preference.

Even given the Ockham assumption (“prefer extensions with the fewest number
of additional variables”), we face a significant challenge to infer that extension from
an observed dynamical causal graph Gy, partly because we do not know how many
latents will be required. However, we can exploit a significant constraint. Recall that
edges are associated with edge lag sets, where the elements in the edge lag set encode
the previous timesteps for which the cause C appears to directly cause the effect E.
Put differently, the edge lag sets encode the lengths of the paths from C to E that
involve only latent variables. This is why we get an infinite edge lag set if there is even
a single simple loop involving a latent on a path from C to E.

More generally, suppose that there is a single path, perhaps with multiple loops,
from C to E involving only latent variables. The set of possible path lengths can be
described in terms of a linear combination of the lengths of the simple loops, and the
length of the directed path to which they attach (and so can act as a “backbone”).
The algebraic expression for this set of path lengths can get quite complex, though it
always can be expressed in terms of a finite series of set sums and set products. If there
are multiple paths (“backbones”), then the edge lag set is the union of these sets (each
describable with an algebraic representation). Computationally, the marginalization
of latents can be performed either sequentially (latent by latent) or in batch mode,
where these are provably equivalent (Davis et al. 2015).

In theory, the inverse operation—obtaining a compressed graph extension that will
result in the observed dynamical causal graph when marginalized—is “only” a matter
of searching the space of extensions to find one that fits the data with the fewest number
of latents. Of course, any brute force approach to this search would be computationally
hopeless. Instead, we need to efficiently construct a dynamical causal graph extension
so that it implies all and only the observed edge lag sets.

18 Technically minded readers might observe that there are usually infinitely many “extensions” in the
static case as well. For example, if X <— L — Y for latent L is possible, then the same graph with two
latent common causes L1, Ly will also fit the data. Thus, the dynamical case does not seem harder in this
regard. However, static latents can typically be “collapsed” together (in a technical sense) in a way that
these dynamical latents cannot. That is, underdetermination in the static case involves graphs that are the
same in many key respects; in the dynamical case, the graphs are quite different.
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Any algorithm that finds the most parsimonious extension will clearly need to reuse
across paths the simple loops (involving latents) whenever possible. Moreover, this
desideratum can be readily satisfied because there is an empirical signal for when paths
share a latent: for all pairs of edges X — Y and A — B in the observed graph Gy, if
the underlying paths in Gyyr, share even a single latent, then there will be X — B and
A — Y in Gy.!” Thus, if there is not X — B, then we know that the paths underlying
X — Y and A — B do not share any edges (or latents). We can thus reduce the size
of the search problem, since we can “modularize” Gy into maximal bipartite cliques
(V1, Va)—the pairs of (largest) sets such that YA € Vi, B € Vo,{A — B}. Notably,
this modularization will typically be a cover, not a partition; a random variable may
belong to multiple maximal bipartite cliques.

Given this modularization of Gy, we can analyze each bipartite clique separately,
since we know that there should be maximal sharing of latents within each bipartite
clique, and no sharing of latents between cliques. The search for a minimal extension
now consists of sequentially constructing simple loops to explain elements of edge
lag sets, and then reconciling these loops among the edges. Alternatively, we can first
express each edge lag set with simple loops in a bipartite clique and then reconcile
the loops. The current implementation of this process involves two distinct steps;
each is provably node-minimal, and we conjecture that the pair of steps is globally
node-minimal.

Returning to the overall problem of evidence amalgamation, suppose that we have
multiple time series, each with the possiblity of latent variables. By using this algo-
rithm, we can infer minimal extensions (one for each time series) that explain the
observed data using the fewest number of latent variables. We can then amalga-
mate this causal information in a relatively straightforward way; for example, the
earlier-discussed ION algorithm (Tillman et al. 2009) could theoretically find the set
of global graphs (over both measured and inferred latent variables) that imply exactly
these causal connections.2? As with the case of timescale mismatch, we can combine
multiple experiments from multiple sources by integrating inferred causal structures.

4 Conclusion

In general, we contend that evidence amalgamation is sometimes best addressed by
thinking about the underlying structures that generated the evidence, as we can thereby
sidestep some of the standard problems of evidence amalgamation. For example,
one challenge in evidence amalgamation is the possibility of different background
conditions in different experiments. As a practical example, suppose that X does not
cause Y in any individual, but that the base rates of X and Y are both higher in
population S; than in S>. If we simply merge data from S; and S>, then we will find
an association between X and Y, which suggests a causal connection of some sort.

19 we conjecture that this is actually an “if and only if” when Gyj, is a minimal extension.

20 TON would need significant modifications, though, since there is no a priori way to “match” newly
introduced latents across graphs. A computationally hopeless algorithm would be to run ION on all possible
relabellings of the latents, and then choose the result that minimizes a suitable criterion, such as number of
resulting edges. Clearly, a more efficient version would need to be developed.
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If we instead merge the causal structures inferred from each dataset, then we will
correctly learn that there is no causal connection between them (since we will learn
“no connection” from each dataset).21

Of course, the shift to amalgamating causal information presupposes that we can
reliably discover or infer those causal structures. Algorithms for causal discovery from
“static” data have been heavily studied over the past 25 years, and their strengths,
weaknesses, and assumptions are relatively well-understood. For example, we know
the conditions in which a latent variable will be inferrable, or will significantly com-
plicate the discovery of causal connections between measured variables (Spirtes et al.
2001). In contrast, there has been much less focus on conditions in which we can
reliably infer dynamical causal structure from time series data.

This paper has focused on two different challenges to reliable discovery of dynam-
ical causal graphs, both of which arise regularly in scientific practice. Timescale
mismatch leads to apparently direct causal connections that are actually only indirect
in the generating causal structure. Latent variables similarly transform “long-distance”
causal connections into direct edges between variables at significantly different times.
In both cases, we thus risk having highly misleading inputs to the causal structure
amalgamation process.

These inference challenges are distinctive to the time series case, and have gone
largely undiscussed in both philosophical and technical literatures. This is particularly
surprising given their prevalence in many scientific domains, and given the serious
problems that they present for causal inference (Seth et al. 2013). Matters are not
hopeless, however, as we have identified causal discovery algorithms that are reliable
for each challenge. Moreover, the different algorithms can be used in sequence for
reliable causal discovery even if both challenges are present.”> Amalgamation of causal
structure (as a way to sidestep some evidence amalgamation challenges) is distinctively
harder in the dynamical or time series case, but there are concrete solutions to these
challenges.
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