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Abstract Research on adaptive rationality has focused principally on inference,

judgment, and decision-making that lead to behaviors and actions. These processes

typically require cognitive representations as input, and these representations must

presumably be acquired via learning. Nonetheless, there has been little work on the

nature of, and justification for, adaptively rational learning processes. In this paper,

we argue that there are strong reasons to believe that some learning is adaptively

rational in the same way as judgment and decision-making. Indeed, overall adaptive

rationality can only properly be assessed for pairs of learning and decision pro-

cesses. We thus present a formal framework for modeling such pairs of cognitive

processes, and thereby assessing their adaptive rationality relative to the environ-

ment and the agent’s goals. We then use this high-level formal framework on

specific cases by (a) demonstrating how natural formal constraints on decision-

making can lead to substantive predictions about adaptively rational learning and

representation; and (b) characterizing adaptively rational learning for fast-and-fru-

gal one-reason decision-making.

Keywords Adaptive rationality � Bounded rationality � Ecological rationality �
Heuristics � Learning � Representation � Cognition

Introduction

A core intuition of the bounded/adaptive rationality research programme is that

cognitively limited individuals can nonetheless function rationally in an uncertain

world by being appropriately ‘‘tuned’’ to their environment. That is, one way to act
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appropriately in the face of significant constraints is to use processes that are not

necessarily reliable in all possible worlds, but are typically reliable in our world.

The largest strand of this programme has argued that success is due to ‘fast and

frugal’ heuristics that take advantage of both the structure of the environment, and

also cognitive capacities and limitations of the organism, whether evolved or

learned, that are rapid and require relatively little cognitive effort. There has been

substantial debate about both the content and suitability of this conception of

rationality (e.g., Gigerenzer 1996; Gigerenzer et al. 1999; Kahneman and Tversky

1996; Samuels et al. 2002; Simon 1976), and while these foundational debates are

deeply important (we discuss them briefly in ‘‘The Nature of, and Justification for,

Adaptively Rational Learning’’ section), our focus is primarily on questions that are

internal to the framework. We largely take for granted that these heuristics are

plausible and interesting, and ask about a particular, under-explored type.

Many heuristics have been proposed in recent years for search, inference,

judgment, and decision-making (e.g., Gigerenzer and Goldstein 1996; Gigerenzer

et al. 1999; Goldstein and Gigerenzer 2002; Hertwig et al. 2012). A well-known

example is Take The Best (TTB), a heuristic for multi-attribute decision-making

problems (e.g. choosing which of two cities has the greater population based on

binary cues such as ‘being the state capitol’ or ‘having a university’). An agent

makes a decision using TTB by searching through the available cues in order of

their validity and choosing the option that is supported by the first (most valid) cue

that discriminates between them. TTB is often supplemented with the Recognition

Heuristic, which says that the first cue considered should always be whether the

agent even recognizes an option (Goldstein and Gigerenzer 2002). Heuristics such

as these typically assume that the agent has cognitive representations that encode

relevant aspects of the environment. For instance, TTB (at least in its initial

formulation in Gigerenzer and Goldstein 1996) assumed that agents have a

representation of the validity of each cue for the specific criterion in question. These

representations are critical for the proper functioning of the heuristic, and

presumably result from the cognitive agent learning about her environment from

her past experiences and reasoning. But apart from some notable exceptions (e.g.,

Todd and Dieckmann 2005; Hertwig et al. 2003; Hills and Hertwig 2010; Hoffrage

et al. 2000; Rieskamp and Otto 2006; Schooler and Anderson 1997), these learning

processes are rarely incorporated into models of the heuristics themselves.

In this paper, we argue that learning deserves the same focus and attention from

the bounded rationality programme as judgment and decision-making. Agents face

many of the same constraints and opportunities while learning as they do while

making decisions and inferences. In particular, learning by cognitively limited

agents can be significantly improved when it is appropriately tuned to the

environment and uses the evolved and acquired capacities of the cognitive agent.

There are close interactions between learning and inference/decision-making: the

rationality of either depends in part on the other. Many claims that some particular

inference or decision-making heuristic is adaptively rational depend implicitly on

assumptions about the learning that occurred previously. For instance, the claim that

TTB leads to good decision-making in environments with non-compensatory cue

structure (i.e. where high validity cues cannot be overridden by several cues with
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lower validities) depends implicitly on the assumption that the agent has correctly

learned the cue orders (Dieckmann and Todd 2012; Martignon and Hoffrage 1999;

but see Katsikopoulos et al. 2010). At the same time, the effectiveness or rationality

of particular learning processes depend in part on how the representations are used

in future judgment and decision-making; a learning process that may be adaptively

rational when used by TTB may be inadequate for other decision-making processes.

There are many issues surrounding adaptively rational learning, and this paper

can only scratch the surface. We certainly do not intend anything in this paper to be

the final word, as research on adaptively rational learning is only just beginning. To

help frame the issues appropriately, ‘‘The Nature of, and Justification for,

Adaptively Rational Learning’’ section characterizes what adaptively rational

learning even is, and why cognitive agents presumably employ it. ‘‘A General

Framework for Adaptively Rational Learning’’ section then argues that there are

certain general features required for any model of adaptively rational learning. We

then build a very high-level mathematical framework that includes those features.

One key aspect of this framework is that we must make precise what ‘‘success’’

means for a learning heuristic in a given environment, and we argue that this

depends critically on the pragmatic and epistemic goals of the learner. ‘‘Adaptive

Rationality in the Particular’’ aims to make this high-level framework concrete by

providing both general and particular ways to apply it for particular psychological

cases.

The Nature of, and Justification for, Adaptively Rational Learning

The success of a decision-making heuristic depends critically on the availability of

the right sort of information. It is common practice to ask how a decision-making

heuristic operates in an environment, but we suggest that the question should be

worded slightly differently, as the agent does not have direct access to the

environment. We should instead ask how a decision-making heuristic operates for a

learner in an environment, where the information available to the heuristic must be

learned or constructed based on limited evidence, time, and computational ability.

This more complex question has sometimes been raised for particular domains, as in

the course of research on TTB. The initial formulation of TTB (e.g. Gigerenzer and

Goldstein 1996) assumed that cue search was based on an accurate representation of

the ecological validities of the cues, but controversy soon arose over whether people

actually can and do learn cue validities (see, for example, Juslin and Persson 2002;

Newell et al. 2004), and if not, whether TTB is really as fast, frugal, and

ecologically rational as it initially appeared. That is, one objection to TTB was that

no adaptively rational learning counterpart had been provided for it.

Several follow-up studies investigated how participants perform when they must

learn about the cues on their own during decision-making and found that neither

their search orders nor their ratings of cue ‘‘usefulness’’ matched the ecological

validities that TTB assumed as input (Newell et al. 2004; Dieckmann and Todd

2012). More generally, some researchers contended that the computational and

memory requirements for learning cue validities are too complex for bounded
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agents (Juslin and Persson 2002; Newell et al. 2004; Dougherty et al. 2008).

Gigerenzer et al. (1999) had initially proposed that people could learn the cue

validities by tracking the frequency of correct responses among the cases in which

the cue discriminates, but Newell et al. (2004) demonstrated that this requires a

fairly complex set of computations. For each cue, the learner has to track the

frequency of correct discriminations as well as the frequency of cases in which the

cue discriminates, and then compute a percentage from these two frequencies.

Newell, et al. proposed instead that people use the ‘‘success rate,’’ which measures

the proportion of correct decisions that would be made by using a cue on its own.

Success rate incorporates both the validity and ‘discrimination rate’ of a cue, and

thus penalizes cues that rarely help the agent choose between two options. More

importantly for our purposes, the success rate ordering (which is all that is necessary

for determining search order) can be learned by monitoring only the frequency of

correct discriminations for each cue. Simulations of TTB with various search orders

have revealed that cue validity is only one of many orders that produces good

accuracy on the task (Martignon and Hoffrage 1999; Katsikopoulos et al. 2010). A

further set of simulations (Todd and Dieckmann 2005; Dieckmann and Todd 2012)

focused on simple heuristics for learning cue search orders ‘online’ during decision

making, and demonstrated that simple ‘‘swap’’ and ‘‘tally’’ rules can result in

remarkably good performance despite their computational simplicity.

We thus have an example of how learning could be approached from the adaptive

rationality framework; this section asks whether we can generalize from it to

broader morals. As this example suggests, learning can matter in two different ways

for adaptive rationality. First, the learning process determines the information—

type, scope, and representation—that is actually available to the decision-maker in

the relevant environments. Decision-making methods almost always require certain

types of information to be provided as input, and so the actual cognitive

representations produced by the learning process help determine whether certain

decision-making methods are even possible for a cognitive agent. More generally,

an evaluation of the rationality of a decision making process is only possible if we

know which features of the environment are represented at the time of judgment or

decision. Second, the extent to which the learning mechanism is itself fast and

frugal matters for the agent’s overall adaptive rationality. Adaptive rationality is a

property of cognitive agents more generally, not just particular cognitive processes.

If a decision-making heuristic only performs well when the learner has exhaustive

evidence and performs extensive computations, then this heuristic cannot contribute

to fast and frugal cognition regardless of how it appears on its own. Adaptive

rationality requires not only that inference and decision-making be fast and frugal

given some representations, but also that those representations be acquired through

fast and frugal learning.

These connections are arguably unsurprising since learning itself involves certain

types of decision-making, such as ‘‘deciding’’ which cognitive representation to

encode given perceptual evidence. These decisions are quite different than those

usually studied in the adaptive rationality programme, however, as they do not

directly manifest in observable behavior. And while the importance of learning has

been studied in particular cases (e.g., for the performance of TTB), we arguably lack
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a general framework for analyzing what makes learning adaptively rational. We

suggest that learning methods are not free from the constraints and limits that plague

other types of inference and decision-making, and so all of the arguments in favor of

adaptively rational inference and decision-making apply equally well to the case of

learning. We here consider three arguments that notions of adaptive rationality

could perhaps provide a fruitful lens through which to understand how we learn

cognitive representations.

First, as with decision-making, certain standard assumptions of axiomatically

rational1 learning methods are violated in many real-world learning situations, yet

people are often able to learn in sensible ways in these cases. In particular,

essentially all axiomatically rational learning methods assume that there are both a

fixed and known space of possibilities (a ‘‘hypothesis space’’), and also known and

computable functions connecting those possibilities with the evidence that the

learner might see. Real-world learning, however, typically requires that one leaves

the door open to the possibility of ‘‘something else’’ that has not previously been

considered or specified, and so the possibility space cannot necessarily be specified

in advance of learning. Moreover, even if we have well-specified possibilities, we

often lack the relevant information to fully specify or compute the implications of

particular possible hypotheses. Although axiomatically rational learning methods

have appealing formal and mathematical properties, they gain their justification only

by virtue of provable properties, not probable or possible ones. Real-world learning

rarely provides the resources to obtain such guarantees, and so we should arguably

consider other ways to analyze the rationality of learning.

A second argument for focusing on adaptively rational learning methods arises

from general observations involving overfitting and the well-known bias/variance

tradeoff (Geman et al. 1992; see Gigerenzer and Brighton 2009 for connections with

cognitive processes). A presumably necessary condition for the axiomatic

rationality of any learning method is that it yields the correct answer, if possible,

given sufficient data. Put more precisely, axiomatically rational learning methods

must be unbiased, as any bias will lead to errors in the long-run. In addition, the

possibility space for a learning method must include as much complexity as in any

possible learning situation, including those in which we receive arbitrarily large

amounts of data. These two requirements jointly imply that axiomatically rational

learning methods will typically exhibit substantial variance when provided only

limited evidence. That is, such methods will almost always be overly sensitive to

chance variations in the input data: different (small) random samples from the same

‘‘ground truth’’ can yield wildly different outputs for the learning method. Real-

world learning situations are frequently characterized by limited evidence,

sometimes only a single datapoint. It can thus sometimes be quite damaging to

the learner to use an axiomatically rational learning method, precisely because the

high variance of such methods on small evidence sets can translate into large

numbers of errors. Instead, it is often in the learner’s best interests to use a method

that is perhaps biased, but also has substantially reduced variance. The question of

1 That is, methods for which there are proofs of their asymptotic and/or short-run reliability.
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where to stand on this bias-variance tradeoff in learning can only be asked, however,

if we adopt the standards of adaptive, rather than axiomatic, rationality.

This last observation points towards the third argument, which suggests that the

‘‘proper’’ standard of rationality is external (e.g., successful actions and outcomes)

rather than internal (e.g., valid reasoning), and so adaptive rationality is the proper

way to evaluate all cognitive processes, including learning (see discussions in

Gigerenzer et al. 1999; Samuels et al. 2002; Simon 1976). There is a voluminous

literature about arguments of this type (Kahneman and Tversky 1996; Gigerenzer

1996) as well as attempts to better understand the different types of rationality (e.g.,

Hammond 1996), and we do not wish to get bogged down in those issues.

Nonetheless, we suggest that these arguments are, while not completely unprob-

lematic, sufficiently plausible that we should see how far an investigation into

adaptively rational learning can take us.

Of course, one might object that learning does not directly affect the external

world in the same way as decision-making, and so it cannot be evaluated according

to an external standard of rationality. Learning might be thought to interface with

the world only indirectly: the output of learning is not an action that is successful or

unsuccessful, but rather a representation that is inefficacious on its own. That is, one

might object that there is no ‘‘external manifestation’’ on which to evaluate the

adaptive rationality of learning.

This objection raises serious concerns, but complementary ones arise equally for

inference and decision-making: those cognitive processes require cognitive

representations as input, and so they seem to lack anything appropriately ‘‘external’’

on the input side. In general, any external standard of rationality should properly

apply to pairs of learning and inference/decision processes. In practice, we (as

cognitive scientists) typically fix one method or the other as ‘‘obvious’’ and then

focus on the other member of the pair, but this is a substantive choice. For any

particular learning method, there will be inference/decision methods for which the

resulting pair yields externally irrational behavior, and similarly for any particular

inference/decision method. Thus, to the extent that one endorses arguments in favor

of an external standard of rationality, one must accept that this standard applies

equally well to learning. Decision-making may mediate the effect of learning on

actions and outcomes, but it does not thereby eliminate learning’s impact. External

rationality applies to learning-inference/decision pairs if to anything at all, and so

we must consider whether learning also employs processes that embody adaptive

rationality. Of course, all of these arguments leave open the exact form and content

of adaptively rational learning, and so we now turn to better understanding it.

A General Framework for Adaptively Rational Learning

A learning process will be adaptively rational to the extent that bounded individuals

can use it to achieve their goals in appropriate environments with limited and

uncertain evidence. As just noted, this assessment depends in part on the

accompanying decision-making process; for now, we assume a fixed judgment or

decision-making process and consider the ‘‘choice’’ of a relevant process later.
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Learning and decision-making involve many of the same challenges (e.g., limited

and uncertain evidence, time constraints), so we propose that agents employ

learning heuristics with the same qualitative features as the heuristics found in

search, inference, and decision-making. First, the processes should be fast and

frugal; that is, they should not require too much evidence or computation in order to

draw useful conclusions. There is significant ambiguity about exactly how to

measure evidential and computational costs, but we leave those issues aside.

Second, adaptively rational learning should take advantage of evolved and

acquired capacities. In some cases, these capacities may be the same as those

proposed for decision-making heuristics (e.g., counting, frequency monitoring,

imitation), though learning may also employ capacities that have not previously

been discussed. In particular, perceptual and attentional processes will presumably

be important for determining what evidence is available to the agent at a given time.

It is also possible that relatively automatic and unconscious learning processes (e.g.,

sequence learning, reward learning, association formation, recognition) can provide

input to more complex inferential processes. Although many papers in the adaptive

rationality programme focus on evolved capacities, we are deliberately agnostic

about whether the relevant cognitive capacities have a phylogenetic (i.e.,

evolutionary) or ontogenetic (i.e., individual learning) basis. Organisms can

certainly learn how to learn, and so we see no reason to assume that only evolved

capacities are relevant. In our view, what matters for adaptively rational learning is

that it involves the reuse of capacities for multiple purposes, rather than assuming

that there is an entirely new learning capacity for each learning challenge.

The final criterion is that the heuristic must be ecologically rational; that is, it

must allow the agent to achieve her goals in her environment. As discussed above,

this poses a significant conceptual challenge because the outputs of a learning

process do not naturally interface with the environment in the same way as the

outputs of a decision process. One response is to assume that the ecological

rationality of learning is measured by its ability to arrive at true conclusions in the

relevant environments. Much of the learning literature implicitly assumes this

standard, and heuristics have been defended using this criterion. For instance,

people appear to use order of observations as a cue to causal structure (Lagnado

et al. 2007), even when they know that, in the artificial setting of the psychology lab,

observational order may not follow the true sequence of events (Lagnado and

Sloman 2006; Sloman and Lagnado 2005). This ‘temporal sequence’ heuristic

plausibly takes advantage of our evolved capacity to detect temporal sequences,

draws conclusions based on only a small set of observations, and usually produces

accurate mental representations in environments (like ours) where observations of

causes typically precede observations of effects. Another example is Monte Carlo

approximation of Bayesian inference (e.g., Denison et al. 2013; Shi et al. 2010;

Bonawitz et al. 2011), which may show how a learning process could typically

produce correct conclusions by approximating (in a bounded way) complex

functions using simple evolved capacities (e.g., exemplar-based reasoning).

We contend, however, that defining ecological rationality as the propensity to

arrive at true conclusions about the environment is an error, as it presupposes that

agents have only epistemic goals for learning (if those are even possible; Danks, in
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press). Cognitive agents will almost always have at least some pragmatic goals: to

achieve the best outcome, receive as much money as possible, appear competent to

others, and so forth. Moreover, there are various psychological results that suggest

that these pragmatic goals can have a significant impact on the cognitive

representations that people learn, such as in concept learning (e.g., Bailenson

et al. 2002; Chin-Parker and Ross 2002; Hoffman and Rehder 2010; Markman and

Ross 2003; Ross 1997, 2000; see also Danks 2014). The adaptive rationality

perspective provides the conceptual resources to incorporate these pragmatic goals.

In particular, learning for pragmatic goals can be successful even if it results in

incomplete or inaccurate representations of the world; the truth is not always best, or

even necessary, for success at a task. Of course, randomly generated cognitive

representations typically will not lead to success either, but the adaptive rationality

framework allows us to begin to ask these questions in a principled way.

We now turn to the challenge of mathematically representing adaptively rational

learning. We recognize that there might be alternative ways to capture adaptively

rational learning formally, but the precise mathematical details are less important

than the qualitative pieces that are required.

In general, the success of learning is determined by whether the acquired

representations allow the agent to achieve her goals—epistemic and pragmatic—in

subsequent inference and decision-making. The overall picture that we adopt can be

expressed graphically as: World ? Evidence ? Cognitive representation ? Ac-

tion. That is, the world generates evidence from which the agent generates a

cognitive representation (via learning) that subserves action (via inference and

decision-making). In this model, the Evidence ? Cognitive Representation link

denotes the learning method L; and Cognitive Representation ? Action refers to the

inference or decision process D. This simplistic picture can be complicated in many

different ways, such as including an Action ? Evidence connection to capture the

ways in which our decisions shape the evidence that we see in the future.

Nonetheless, this simple picture is already sufficient to reveal some of the

complexities of adaptively rational learning, such as evaluating the adaptive

rationality of actions given the world or evidence by considering \L, D[ pairs,

rather than either one in isolation. Finally, we must include a representation of an

agent’s goal G, which we operationalize through a value function VG(a, w) that

depends on the particular action a and world w. For example, if the goal is simply to

learn some feature of the world, then the value function would be maximal when

a ‘‘matches’’ w in the relevant respects.

Given this general setup, we can mathematically evaluate any particular\L, D[
pair of learning and decision processes. Learning given evidence e will yield

cognitive representations that are used by the decision process, along with

knowledge of the goal value function, to produce an action. Moreover, these

different learning and decision processes are presumably all probabilistic:

P ajeð Þ ¼ D L eð Þ;VGð Þ. Both L and D can be generalized in obvious ways to include

background knowledge; in particular, L can depend on the goal value function, if it

is known prior to learning. For a fixed set of goals G and probability distributions

over those goals and the world-states, the expected value of a particular\L, D[pair

can be expressed as:
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EVð L;Dh iÞ ¼
X

G2G

X

w2W

X

e2E

X

a2A
VGða;wÞDðLðeÞ; vGÞPsampleðejwÞPðwÞPðGÞ

We previously mentioned cognitive representations, but they do not explicitly

appear in this equation. In this particular formulation, they play only an implicit

role: the space of cognitive representations determines the amount of information

(about e) that can possibly be transmitted through L(e) to the decision process D. As

we consider more specific situations, they will figure more prominently.

The expected value equation given above provides a general standard by which

to evaluate the adaptive rationality of particular \L, D[ pairs. A wide range of

current learning and decision methods can be represented in it with minimal

adjustments or modification. At the same time, this equation is arguably too general:

it is rather opaque, and it is hard to see how to draw any general conclusions from it.

We thus consider several more specific cases in the next section to show both how to

evaluate the adaptive rationality of learning methods, and also the distinctive

predictions of such an analysis.

Adaptive Rationality in the Particular

This section explores both general formal constraints and substantive situation-

specific ones that help make this framework more concrete and usable. The first half

of this section is more mathematical in nature, the second half more psychological.

For the mathematical investigation, we first explicitly model the space of possible

cognitive representations R. A particular cognitive representation r can be

understood to encode a ‘‘way that the world could be.’’ Moreover, we assume

that there is typically a determinate best (for a goal) action for any particular state of

the world. There may be unusual circumstances in which indeterministic choice is

best even when the exact state of the world is known (e.g., the use of a truly mixed

strategy in a game), but most cases of uncertainty about actions arise precisely

because we do not actually know how the world is. These observations suggest a

natural constraint on the decision function D, if the cognitive agent’s uncertainty is

expressed by probabilities over cognitive representations (i.e., L(e) = P(R)):

Determinism: Recall D(P(R), VG) = P(A). If P(r) = 1, then for some a [ A,
D(P(R), Vg) = 1. For convenience, we write D(r, VG) = a to indicate that the

cognitive representation r dictates action a (given goal G).

In other words, the decision-procedure dictates a unique best action for every

different goal and ‘‘way the world could be.’’ At the same time, we might expect

that there are no ‘‘interactions’’ in this uncertainty: the decision probability of an

action a should be simply the probability of the cognitive representations that

(deterministically) would lead to a, if they were fully believed or endorsed. More

precisely:

Composition: D(P(R), Vg) = P(A) such that P(a) = P({r : D(r, Vg) = a}).
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Determinism and Composition are natural constraints on the decision function,

and many standard decision algorithms from the adaptive rationality frame-

work satisfy these two properties. More interestingly for our focus, a decision

function satisfying Determinism and Composition naturally groups together

cognitive representations that are ‘‘the same’’ with respect to the decision process.

More precisely, if D satisfies Determinism and Composition and D(r1, VG) = D(r2,

VG), then the cognitive agent’s decision will be indifferent over reallocation of

probabilities between r1 and r2; only the sum of those probabilities are relevant for

decision-making. For example, if I am choosing between two urns with the goal of

getting a black ball, and the only representations with positive probability are

r1 = ‘‘Urn 1 has 75 % black balls and Urn 2 has 60 % black balls’’ and r2 = ‘‘Urn 1

has 70 % black balls and Urn 2 has 50 % black balls,’’ then the relative probabilities

assigned to r1 and r2 should not matter; I will choose Urn 1 regardless. Formally,

any D that satisfies Determinism and Composition induces a partition of the

cognitive representations R—that is, a division of R into disjoint subsets—where

two representations ri and rj are in the same partition element if and only if D(ri,

VG) = D(rj, VG). More colloquially, each partition element is a set with just those

representations that all lead to the same action, and so are indistinguishable with

respect to the decision process.

This partitioning of the cognitive representations yields freedom in an adaptively

rational learning process. If D does not distinguish between r1 and r2 with respect to

goal G, then learning methods that differ only in output about r1 and r2 will exhibit

the same performance, and so other factors can be relevant in determining their

adaptive rationality. More precisely, we can talk about two learning methods L1 and

L2 being indistinguishable relative to a partition p for a decision process D just

when, for each possible piece of evidence, the outputs of L1 and L2 are the same

when assessed at the level of elements of p.2 If an agent’s cognitive representations

are at the level of partition elements,3 then she should (on representational grounds)

be indifferent between L1 and L2, and so one learning process can be preferred for

more pragmatic reasons, such as which method exploits evolved or acquired

capacities. This conclusion is at odds with many analyses of the rationality of

particular learning processes, at least if the cognitive representations in R are

assumed to be sufficiently fine-grained. For example, most arguments that Bayesian

updating provides a rational learning method will not apply to alternative learning

methods that are indistinguishable relative to a partition, even though those methods

may be equally adaptively rational (and perhaps more so if we take into account, for

example, the time the brain would need to complete each computation). Moreover,

for a particular goal G and decision process D that satisfies Determinism and

Composition, the partition induced by D and VG is naturally privileged and so we

see how learning and decision processes start to fit together: the goal and decision

tell us which distinctions matter, and learning tries to extract and represent those

distinctions from the environment.

2 In particular, the sums of probabilities within each partition element must be the same.
3 There are many ways to have ‘‘representations at the level of partition elements,’’ including both

coarsened representations and inattention to particular distinctions in the world.
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Importantly, this way of thinking about learning provides us with a principled

way to determine how one ought—given a goal G and decision process D—to

coarse-grain one’s cognitive representations. The representations in R can poten-

tially be quite fine-grained, and so more specific than is required for either learning

or decision. For example, when learning about the two urns, a seemingly natural

R consists of all ordered pairs of numbers between zero and 100, \U1, U2[,

representing the percentages of black balls in Urn 1 and Urn 2. If, however, our goal

is to choose an urn so as to pick a black ball, then only three cognitive

representations are decision-relevant: ‘‘Urn 1 has more black balls than Urn 2’’;

‘‘Urn 2 has more black balls than Urn 1’’; and ‘‘Urn 1 has the same number of black

balls as Urn 2’’. Formally, the natural decision process partitions the ordered pairs of

R into three subsets: (i) those in which U1[U2; (ii) those in which U1\U2; and

(iii) those in which U1 = U2. There is no need for the agent to include any finer

distinctions in her cognitive representations. Many different learning processes will

be equally effective for this goal and decision process, and so adaptive rationality

may depend deeply on other factors.

The preceding discussion focused on the case of a single, known goal, but we

often have multiple goals or uncertainty about our future goals. If there are multiple

goals, then the normative p depends partly on whether there is a cost to use

partitions p with more elements; in psychological terms, is it costly for the cognitive

agent to represent more possibilities? If there is no such cost, then the optimal

partition may well be the one in which each element contains exactly one cognitive

representation (i.e., nothing gets grouped together).4 More generally, though, there

might plausibly be a ‘‘cost’’ (of one sort or another) to using a partition with many

elements. In that case, the adaptively rational way to coarse-grain one’s cognitive

representations will depend on a complicated trade-off between (a) this cost; and

(b) having a partition that is sufficiently rich to capture the distinctions that matter

for the different goals (with their different likelihoods of occurring). In either case,

we can start to see how this approach can lead to interesting predictions about how

adaptively rational learners should ignore some distinctions in the world, depending

on their goals. That is, adaptively rational learners can be normatively justified in

ignoring learnable differences in the environment, as long as those differences do

not make a difference for foreseeable decisions.

We can also use this general framework to better understand particular proposed

heuristics. We focus here on the psychological problem of learning for one-reason

decision-making on a binary choice task. In particular, what representations ought

we learn and use with the TTB heuristic? In the standard TTB heuristic (Gigerenzer

and Goldstein 1996) the cognitive agent searches through cues sequentially in order

of their ecological (i.e. population-level) validity (search rule), stops when a cue is

found that discriminates between the two items (stop rule), and chooses between the

items based solely on the discriminating cue (decision rule). Since the ecological

validities are not known but must be learned, we consider a slight modification—

4 More precisely, for each representation r, let Or be the vector of ‘‘optimal responses’’ for the N goals

(i.e., Or =\ a1,…,aN[where ai = D(r, VGi)). It is straightforward to prove: if all partitions are equally

costly, then r and s are in the same element of the optimal partition if and only if Or = Os.
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call it TTB*—in which the search rule depends on the (uncertain) cognitive

representations P(R).5 This modification allows us to analyze which features of the

cognitive representation are necessary for TTB* to deliver ecological success

without making a priori assumptions about the structure of the representations

themselves.

TTB* satisfies Determinism and Composition if we add a few small constraints.

Recall that a decision procedure satisfies Determinism whenever each possible

representation r of the world leads deterministically to a specific action. This can be

violated by TTB* if two cues had identical represented usefulness. To avoid this

problem, we assume that no fine-grained representation encodes two cues as having

exactly equal usefulness; alternately, we could incorporate a deterministic tie-

breaking mechanism. Importantly, this assumption does not imply that the agent

will always search the cues in a deterministic order, as the agent may have

uncertainty about the exact nature of the world (i.e., the exact, correct cue order). In

order to satisfy Composition, we make the minimal assumption that the probability

of using cue A (rather than cue B) is based on the agent’s representation of the

probability that cue A is more useful than cue B. Assuming these two conditions are

satisfied, TTB* imposes a partition over the space of possible representations R: ri
and rj are in the same partition element if and only if they imply the same usefulness

ranking for the cues, though not necessarily the same exact numbers. That is, the

only feature of the agent’s cognitive representation that affects her ecological

success is the rank order of the cues, rather than any absolute measures.

Importantly, the preceding analysis did not assume that the fine-grained

representations R must directly represent search orders. Rather, the conclusion

that rank order, and so search order, is the only representation that ‘‘matters’’ was

derived from the structure of the environment, the agent’s goal, and TTB*. The

cognitive representations could include information about search order, cue validity,

success rate, reward value, positive emotional valence, or any combination thereof.

But once we specify those representations R, we find that qualitative search order is

the only feature of P(R) that influences ecological success. This narrow focus can

lead to considerable benefit for the agent: in particular, using a more coarse-grained

hypothesis space may reduce the variance of learning, though perhaps at the cost of

increased bias. As we noted in ‘‘The Nature of, and Justification for, Adaptively

Rational Learning’’ section, this trade-off can often improve accuracy in the short-

(or at least not infinitely long-) run. But we should also bear in mind that more

precise representations may be useful if we have other goals, or if we use them for

decision-making methods other than TTB*. Alternately, more precise representa-

tions might actually be easier to learn; for example, precise success values might be

computed for other reasons, or be produced by some already-present capacity.

The decision procedure on its own allows us to define the features of the

representation that can possibly affect ecological success (i.e. the partitions), but the

benefit to the agent of assigning credence to one partition over another depends on

her goals and environment. The ‘‘best’’ partition may result in much more success

than the second-best one, but often they may be almost identical. In this vein,

5 R could be the space of possible cue validities or another similar representational structure.

98 S. Wellen, D. Danks

123



Martignon and Hoffrage (2002) examined the performance of the possible cue

orderings (362,880 in total) for TTB in the German cities environment, and showed

that there is a range of orderings that perform as well as (or even better than) the

rankings implied by the true cue validities. The true cue validities have a 74.2 %

accuracy rate, which falls towards the top of the range (62–75.8 %) but only 4.2 %

points above the accuracy achieved by choosing cues at random (70 %). The value

function over the partitions is of course environment- and goal-specific, but we can

make some general observations that will be true for all particular cases. Whenever

multiple cues have very similar usefulness, there is relatively little practical benefit

to getting their search order exactly right. Conversely, there is quite a substantial

benefit whenever cues vary widely in their utility. As a result, the cue structure of

the environment (in combination with the decision procedure) may result in a

scenario where adopting a hypothesis space that is even more coarse-grained than

the partition (e.g., sorting cues into n usefulness classes where n is less than the

number of cues) could further reduce variance and improve ecological success.

The partition determined by the decision procedure TTB* is the maximally fine-

grained one for that decision procedure and goal, but even those distinctions might

not be worth the cost given other goals, environmental structures, and computational

capacities of the agent. More generally, we conjecture that bounded, but adaptively

rational, agents should exhibit considerable flexibility in trading accuracy for

improved performance on other measures. The classic example is the trade-off

between accuracy and the number of cues retrieved (the ‘success rate’ measure

explicitly makes this trade-off), but there may be other trade-offs that are beneficial

only from a learning perspective. For instance, agents might be frugal in the amount

of evidence they use because their learning mechanism uses less information, either

by searching fewer cues or by attending more to cues that have not previously been

searched. Similarly, a learning mechanism that requires less computation to update

the agent’s cognitive representations might naturally be preferred over a learning

mechanism that requires more.

Dieckmann and Todd (2012) examined several algorithms for iteratively learning

cue orders. For instance, they considered a simple swap rule where a cue is moved

up in the search order if it makes a correct discrimination, and down if it makes an

incorrect one. This proposed rule fits well with the requirements of adaptive rational

learning because (i) only the necessary information—search order—is represented;

(ii) it is frugal in the amount of information and complexity of updating rules; and

(iii) it produces fairly good performance (71 vs. 74 % for TTB). One particularly

promising feature of this rule is that it works by using limited information (i.e., only

the outcome of the current choice) to make a local modification to the

representation. This feature is characteristic of greedy algorithms, which have

been shown in machine learning to often reach locally optimal solutions without

extensive memory or computational requirements. This class of algorithms could

provide significant inspiration going forward.

Finally, while considerable work has been done on evaluating whether one-

reason decision-making is robust across search orders, our framework allows us to

ask the converse question: is a given learning mechanism robust across different

decision-making strategies? There is considerable evidence that people do not
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universally use one-reason decision-making (Newell and Shanks 2003; Bröder

2000, 2003), so one might wonder whether adaptively rational learning mechanisms

could produce appropriate representations for these other decision procedures. For

example, the success of improper linear models in many decision tasks (e.g., Dana

2008; Dawes 1979; Lovie and Lovie 1986; von Winterfeldt and Edwards 1986)

suggests the possibility that learning in these cases is over a greatly coarsened set of

representations. More generally, an analysis of learning for other decision-making

strategies (e.g., two- or three-reason decision making, tallying, weighted additive

models, decision trees) is beyond the scope of this paper, but our model provides the

conceptual resources and motivation to begin exploring this uncharted territory.

Conclusion

Our goal in this paper was to identify a significant gap in the adaptive rationality

research programme and a significant opportunity for learning research. The

adaptive rationality of a cognitive agent depends not just on her inference,

judgment, and decision-making strategies, but also on her learning processes. We

should expect that people use fast and frugal learning methods that are based on

evolved cognitive capacities, and provide the information required for them to reach

their goals, both epistemic and pragmatic. This paper has been admittedly

programmatic in places, as the nature of adaptively rational learning is clearly a

bigger subject than we can exhaustively examine in a single article. Nonetheless, we

contend that the formal framework we have presented—both in general, and in the

particular—provides the conceptual resources that are required to explore the

possibility that human learning is adaptively rational.
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