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1 . INTRODUCTION
................................................................................................................

Causal beliefs and reasoning are deeply embedded in many parts of our cognition

(Sloman 2005). We are clearly ‘causal cognizers’, as we easily and automatically (try

to) learn the causal structure of the world, use causal knowledge to make decisions

and predictions, generate explanations using our beliefs about the causal structure

of the world, and use causal knowledge in many other ways. Because causal

cognition is so ubiquitous, psychological research into it is itself an enormous

topic, and literally hundreds of people have devoted entire careers to the study of it.

As such, this chapter will necessarily be woefully incomplete. Each of the sections

below (except perhaps sect. 4) could easily be expanded to an entire book, and this

chapter must (by necessity) leave unaddressed some areas of psychological research

that are plausibly relevant to causal cognition.1

1 Two omissions merit special mention. First, there is an enormous literature in social psychology

on causal attributions as one type of social inference (see Uleman, Saribay, and Gonzalez 2008 for a

recent review). Unfortunately, space considerations prevent any serious examination of that research,

Helen 21-Bee_bee-Chapter-21 Page Proof page 445 15.6.2009 11:03pm



Causal cognition can be divided into two rough categories: causal learning

(sects. 2–4) and causal reasoning (sect. 5). The former encompasses the processes

by which we learn about causal relations in the world at both the type and token

levels; the latter refers to the ways in which we use those causal beliefs to make

further inferences, decisions, predictions, and so on. The two types of causal

cognition are clearly connected to one another, but psychological research on

each has proceeded relatively independently from the other. Causal learning itself

can be divided into two distinct types: causal perception (sect. 2) and causal

inference (sect. 3). Causal perception consists of the relatively automatic, relatively

irresistible perception of certain sequences of events as involving causation. For

example, if a nearby car alarm goes off when I close my own car door, then I cannot

help but perceive my own action as causing the alarm, even though I know that my

action was not causally relevant. Causal inference, on the other hand, consists of

higher-level causal learning that is based largely on statistical relationships. For

example, I learn that one drug is better than another for pain relief by considering

the relevant (statistical) history. There are historical and sociological reasons for

this split in research on causal learning, but there are also apparent differences in

phenomenology, behaviour, and underlying neural bases. The precise connection

between causal perception and inference is discussed in more detail in sect. 4.

Finally, research on non-human animals (sect. 6) has in recent years helped us to

understand better the nature of human causal cognition by revealing ways in which

our causal cognition is similar to, and differs from, that of other animals.

2 . CAUSAL PERCEPTION
................................................................................................................

Consider looking at a computer screen with a red square in the centre, and a green

square moving smoothly towards the centre from the left side. Suppose further that

the green square stops when it first ‘touches’ (i.e. is contiguous with) the red

square, and the red square begins moving to the right at the same speed. Nothing

about this description, or (seemingly) the visual information, indicates anything

about causation; this really is nothing more than a sequence of images on a

computer screen. Nonetheless, when presented with a sequence of images such as

these, almost everyone will immediately and spontaneously say that the green

though social inference is briefly discussed in sect. 2. Second, there is a small but growing body of

experimental research on people’s explicit (but untutored) judgements about the ‘meaning’ of the

word ‘cause’ (e.g. Goldvarg and Johnson-Laird 2001; Wolff 2007). This research is still very much in its

infancy, and there is growing evidence that the word ‘cause’ is linguistically ambiguous.
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square caused the red square to move.2No conscious thought or reasoning seems to

be required, and very few observers can avoid believing that the one block caused

the movement of the other. This canonical instance of causal perception—referred

to as the launching effect—was first systematically explored by Albert Michotte, and

catalogued in his 1946 book La Perception de la causalité (translated in 1963).

Michotte conducted over one hundred studies investigating exactly when the

launching effect does and does not arise spontaneously in observers. He showed,

for example, that the standard launching effect does not arise if there is a spatial or

temporal gap between the objects’ movements: if the green square stops short of

the red one, or the red one’s movement occurs (noticeably) after the green square

touches it, then one does not experience any perception of causality.

Michotte’s findings were originally quite surprising, but methodological con-

cerns about his results have essentially all been answered, and the basic phenome-

non of causal perception is now widely accepted (White 1995). Even infants are

widely thought to experience causal perceptions (Leslie 1982, 1984; Leslie and Keeble

1987; Oakes 1994; Oakes and Cohen 1990). Post-Michotte research on causal per-

ception has largely aimed to determine both the exact conditions under which

causal perception occurs and the constituent processes of causal perception. As an

example of the first line of research, Scholl and colleagues have shown that causal

perception depends on context, and not just the primary objects (Choi and Scholl

2004; Scholl and Nakayama 2002). Suppose that the green square (in the original

example) moves over the top of the red square and stops when it completely covers

the red square, and the red square only starts moving once it is completely covered.

In these cases, people do not normally experience any causal perception; rather, they

usually experience one object passing smoothly over another and changing colour

spontaneously in the middle of the motion. If, however, an ordinary launching

event occurs somewhere else on the screen at the same time, then the experience of

this sequence changes. In this case, it is viewed causally as the green square launch-

ing the red. Whether an image sequence is perceived causally can thus change

depending on seemingly irrelevant events elsewhere in the visual field, and even

infants are affected by these sorts of contextual changes (Newman et al. 2008).

Research on the component processes of causal perception has focused on its

development, and its neuronal bases. Developmentally, 6-month-old infants seem

to perceive the basic launching effect stimuli in terms of causality, rather than

‘simpler’ perceptual features such as contiguity or persistence (Leslie 1982; Leslie

and Keeble 1987).3Oakes and Cohen (1990) found that causal perception arises for

2 Many examples of such sequences can be found at the website of Brian Scholl’s research

group,< http://www.yale.edu/perception/Brian/demos/causality.html>, accessed 12 March 2009.

3 Onemight wonder how we could determine such a thing, given that 6-month-olds are pre-verbal,

and even pre-mobile. All of the cited experiments are so-called ‘looking time studies’. The basic idea

underlying this experimental design is that infants look longer at things that interest them, and stop

looking at things that bore them. Thus, if infants who have repeatedly seenQ subsequently look longer
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more complex stimuli (e.g. unusual trajectories) only in 10-month-olds, but not

6-month-olds (see also Oakes 1994). Infants younger than 6 months old attend to

(i.e. perceive) only some of the spatial and temporal components of a launching event;

they do not seem to have ‘full’ causal perceptions (Cohen and Amsel 1998). Causal

perception thus seems to require (separable) perceptions of appropriate spatial and

temporal contiguity, and also the ability to ignore extraneous perceptual elements.

Causal perception does not arise in one fell swoop, but rather comes together more

slowly. In adults, spatial contiguity even ceases to be necessary in some cases; causal

perceptions can arise without any spatial contact at all between the on-screen objects

(White andMilne 1997, 1999). Similar results emerge from the limited neuroscientific

work on causal perception: for example, fMRI data suggest that overlapping, but not

identical, brain regions are responsible for the spatial and temporal components of

causal perception (Fugelsang et al. 2005). There does not seem to be a single,

neuronally distinct ‘module’ for causal perception (though see below).

Most experiments on causal perception have focused on variants of launching

events, but causal perception can arise in other contexts. In their classic experi-

ments, Heider and Simmel (1944) showed that the movement of simple geometric

objects is sometimes perceived as intentionalmovement by the objects. For example,

suppose the red square (in the original launching event) begins moving before the

green square arrives, and the red square moves erratically while the green square

follows smoothly behind it. This sequence of images will typically be perceived as

the red square ‘fleeing’ while the green square ‘chases’. That is, causal perceptions

arise not just for physical causation, but also for social or intentional causation, and

are similarly automatic and unprompted in the latter domain. These perceptions of

objects as ‘intentional agents’ whose states can cause behaviour seem to arise as early

as 9 months old (Csibra et al. 1999; Gergely et al. 1995). Physical and social causal

perceptions do appear to be separable, however, as the former seems to be perceived

more strongly than the latter (Schlottmann et al. 2006).

Causal perception has traditionally been viewed as philosophically interesting

because it seems to be a (partial) psychological vindication of Kant over Hume:

certain judgements of causality seem to be part-and-parcel of perception, rather

than something that occurs after ‘basic’ perception has taken place. Moreover,

these causal perceptions can influence other perceptual judgements, such as event

timing (Choi and Scholl 2006; Newman et al. 2008), and causal perception does

not seem to be susceptible to top-down control or overriding (Blakemore et al.

2001; Fonlupt 2003). Causality seems to be built in to some of our perceptions of

at A rather than B, then those infants must think that A is more different fromQ than B is. IfQ, A, and

B are appropriately matched on all dimensions but one, then the infants are arguably conceptualizing

(or perceiving) Q and B as the same on that last dimension, while A is different. There are obvious

concerns about looking-time studies, and they are notoriously difficult to interpret. Nonetheless, this

experimental method is the best we currently have for understanding the mental life of infants.
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the world, rather than always being only inferred from a sequence of images. More

generally, as Michotte (1963) himself realized, causal perception seems to be a

plausible candidate for a modular process (in the Fodor 1983 sense), as it is fast,

automatic, mandatory, and informationally encapsulated. Causal perception

(seemingly) depends only on visual input, and not on higher-level cognition; you

cannot, for example, choose not to see the classic launching events as causal. It also

arises cross-culturally, and causal perceptions are the same even for groups that

make quite different causal attributions in social contexts (Morris and Peng 1994).

Several researchers have used the above reasons to argue that causal perception is

plausibly a cognitive module (Leslie 1984, 1994; Leslie and Keeble 1987; Scholl and

Tremoulet 2000), and perhaps even a neurological module (Blakemore et al. 2001).

But although causal perception behaves modularly in processing, there are reasons to

doubt that it constitutes a fully Fodorian module. It does not have a classically

modular development (Schlottmann 2000), as causal perception requires different

cognitive components that develop at different times. Neurally, these components

seem to be distributed relatively widely: both temporal lobes, the inferior parietal lobe,

and the frontal gyrii (Blakemore et al. 2001; Fugelsang et al. 2005). Behaviourally, there

do not seem to be any reported cases of selective loss of causal perception; at the

current time no individuals have been found with lesions or other neural damage that

resulted in loss of causal perception (withoutmuch broader loss of visual perception).

There are also significant individual differences in causal perception. Examples in-

clude the findings that (1) some individuals fail to have a causal perception for classic

launching stimuli (e.g. Beasley 1968); (2) causal perceptions or their absence can

change upon repeated exposure of the same stimuli; and (3) experience can affect

whether causal perceptions occur. Moreover, these individual variations are largely

stable over time (Schlottmann andAnderson 1993), and so suggest that the ‘module’ at

least has important parameters that are set by personal experience. Causal perception

has many modular features—automaticity, mandatory triggering, and informational

encapsulation—but does not seem to satisfy fully the classical profile of a module.

3 . CAUSAL INFERENCE
................................................................................................................

A different type of causal learning occurs when one is learning that exposure to a

particular plant (e.g. poison ivy) causes a rash, or that a new drug has various side

effects. In these cases, one often cannot rely on spatio-temporal cues, but rather

must attend to differences in occurrence rates in some relevant population. The

paradigmatic situation for causal inference is one in which the learner observes a

series of situations or cases in which various potential causes do or do not occur,
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and the presumptive effect does or does not occur (Cheng 1997; Cheng and Novick

1990; Shanks 1995). The learning challenge is then to determine which potential

causes are actual causes, and also the strengths (in some sense) of those causes.

Numerous variations on this paradigmatic situation are obviously possible; for

example, one might have spatio-temporal information (e.g. Buehner and May

2002), or the learner might actively bring about some of the cases (e.g. Sobel and

Kushnir 2006). The central challenge remains largely the same, however: use

principally statistical information (e.g. something like correlation) to learn causal

relations and strengths. This type of causal inference is not directly perceptual, nor

does it seem to have the same type of automaticity as causal perception: people

rarely learn that a plant causes a rash after only one exposure (though they might

suspect that it does so). Causal inference also seems to require higher-order

(in some sense) cognition than causal perception. As a result, psychological

research on causal inference has proceeded relatively independently of research

on causal perception (though see sect. 4 below).

The dominant experimental paradigm in psychological research on causal infer-

ence has three principal components. First, the ‘cover stories’ largely prevent

experimental participants from using any substantive prior causal knowledge

beyond, for example, temporal order. Second, the relevant variables for causal

inference are always obvious in the stimuli, and the variables might even be divided

into potential causes and an effect. Third, participants provide their judgements

about the causal relations as explicit numeric ratings for each potential cause,

usually on a scale ranging from �100 (‘always prevents’) to þ100 (‘always gener-

ates’). There are of course experiments without one or another of these compo-

nents: for example, the cover story might evoke substantive domain knowledge

(e.g. Schulz and Gopnik 2004); the cases might be presented using actual

objects (e.g. Gopnik et al. 2004); participant behaviour might generate the cases

(e.g. Buehner and May 2003; Steyvers et al. 2003); or participants might respond

with graphs rather than numeric ratings (e.g. Steyvers et al. 2003). The principal

theoretical task, however, is surprisingly constant over all of these variations:

explain the patterns of ratings that are generated by systematic variations in the

statistical relationship between the potential causes and effect.

One intuition explored early in the psychological research is that human causal

inference might be similar to, or even identical to, the associative learning processes

found in non-human animals. Most people are familiar with the notion of classical

(Pavlovian) conditioning: repeatedly ring a bell (referred to as the cue or

Conditioned Stimulus, CS) just before presenting a dog with food (the outcome

or Unconditioned Stimulus, US) and the dog will come to associate bell-ringing

with food (and so salivate upon bell-ringing). Instrumental conditioning refers to

situations in which the relevant cue is generated through the animal’s own action

(e.g. the dog presses a lever). Of course, both types of conditioning can lead to

quite complex patterns of behaviour, as numerous behaviourist experiments
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demonstrated (e.g. Skinner’s pigeons that famously ‘played’ ping-pong). Broadly

speaking, formal models of these processes, and the full range of conditioning

phenomena, are referred to as associative models (though in recent years, ‘associa-

tive’ has frequently been used as a pejorative term to refer to any model that an

author does not like). The dominant associative model of the past thirty years is

the Rescorla–Wagner (1972) model, though many alternatives have been proposed

(e.g. Pearce 1987; Van Hamme and Wasserman 1994). All the models represent

associative learning as the learning of so-called associative strengths for the differ-

ent factors, and they share other features: the processes require little memory or

computational power; cases are handled sequentially, rather than as a group; and

learning proceeds through an error-correction process (i.e. associative strengths

are adjusted based on the error between their prediction about whether the

outcome will occur and whether it actually does occur). There are also models

that share these features, though they have no history in the animal behaviour

literature (Catena, Maldonado, and Candido 1998; Danks, Griffiths, and Tenen-

baum 2003). One proposal for causal inference is that the causal strengths learned

in human causal inference (and reported as ratings in experiments) might actually

be associative strengths learned using some associative process (Shanks 1995).

Instead of the case-by-case learning characterized by associative models, one

could focus on asymptotic causal inference: what causal relations do people learn

after a long enough sequence or summary of cases (i.e. once their beliefs stabilize)?

This type of causal inference is closely connected to, but importantly different from,

the narrower problem of contingency learning: people’s ability to infer association

or independence between two variables given either a sequence of cases, or a

summary table of the data (De Houwer and Beckers (2002) review empirical data

on contingency learning; McKenzie and Mikkelsen (2007) review formal models).

Three different models of asymptotic causal inference give a feel for their diversity.

The˜Pmodel (Cheng andNovick 1990, 1992) holds that causal strength judgements

are given by the difference between the probability of the effect when (1)

the potential cause is present, and (2) when it is absent (i.e. ˜P=P(E |C)-P(E |C)).

The causal power approach (Cheng 1997; Novick and Cheng 2004) supposes that

people represent the world in terms of unobserved causal powers (similar to

capacities in the sense of Cartwright 1989) and use the observed statistics to try to

make inferences about the strengths of those powers. The pCI model (White 2003a,

c) argues that people attend to the proportion of confirming instances: the fraction

of observed cases that support the existence of a causal relation (relative to the total

number of observed cases). There are differences in metaphysical commitments and

mathematics, but the models of asymptotic causal inference all share the common

goal of predicting people’s rating patterns once learning is completed and beliefs

have stabilized.

Associative models of causal inference and models of asymptotic causal infer-

ence are often thought to be direct competitors with one another. A series of formal
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results (e.g. Cheng 1997; Danks 2003; Tenenbaum and Griffiths 2001) have emerged

in the past ten years, however, showing systematic connections between associative

models of causal inference and models of asymptotic causal inference. Specifically,

many different associative models of case-by-case learning each (provably) con-

verge in the limit to a different asymptotic model (e.g. the associative model of

Danks et al. (2003) converges to causal power). Danks (2007b) extends and unifies

these disparate results, and shows that these different types of models do not

compete, but rather are simply models at different temporal scales.

These mathematical connections reveal that both associative and asymptotic

models focus on inference of causal strengths, rather than causal structure.

Of course, strength ratings implicitly encode structure (i.e. no causal connection

if and only if strength of zero), but the two types of inference are at least logically

separable. The causal Bayes net framework (Pearl 2000; Spirtes, Glymour, and

Scheines 1993) explicitly represents this distinction between causal structure

(i.e. the graph) and causal strength (i.e. the parameters). Moreover, all the previ-

ously proposed causal inference theories—both associative and asymptotic—

provably correspond to strength inference rather than structure inference (Danks

2007b; Griffiths and Tenenbaum 2005). The causal Bayes net framework also

provides a clear account of the difference between learning from observations

and learning from interventions, which had previously been largely neglected in

the psychological literature. That account led to numerous studies that confirmed

that the observation vs. intervention difference affects people’s causal inference

(e.g. Gopnik et al. 2004; Lagnado and Sloman 2004; Sobel and Kushnir 2006;

Steyvers et al. 2003).

This representational power, as well as the successful use of causal Bayes nets in

other domains, has prompted two types of proposal for human causal inference

based on causal Bayes nets. The first type holds that human causal inference involves

learning causal structure and strengths from the set of all possible structures

consistent with background knowledge (Gopnik and Glymour 2002; Gopnik et al.

2004; Griffiths and Tenenbaum 2005; Steyvers et al. 2003). These proposals differ

principally about the nature and level of the learning algorithm. The second type

argues that people start with some initial structure, and only change their mind if

the data directly contradict the initial model (Hagmayer et al. 2007; Lagnado and

Sloman 2004; Lagnado et al. 2007; Waldmann 1996). The initial structure is selected

on the basis of various heuristics, such as ‘if I change X ’s value, then anything that

changes iafterwards must be an effect of X’. Learning on this account does not

involve selecting the best (by some measure) causal Bayes net from the set of all

plausible possibilities; instead, the learner selects a hypothesis by various heuristics,

and then retains it until it is falsified.

There are many different psychological models for causal inference, and a

correspondingly large number of experimental studies. There is very little agree-

ment about which causal inference model is right, or even about which approach is
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the most likely to be fruitful. One significant problem is that none of the extant

models can capture all of the extant data (Perales and Shanks 2007). Some models

are, of course, better than others, but none predict all the ways that ratings vary as

statistical information changes. Causal Bayes net theories have a representational

advantage in capturing the psychologically significant distinction between obser-

vation and intervention, but even they cannot explain all data relating to that

distinction. One potential explanation is that people use a mixture of strategies

(Buehner, Cheng, and Clifford 2003; Lober and Shanks 2000), and different

experiments may well elicit different types of judgement, as ratings seem to be

sensitive to the probe question used (Collins and Shanks 2006; White 2003b). One

might hope that neuroscience could help, but currently available fMRI data do not

provide much insight. Causal inference does seem to involve some sort of error

prediction/correction occurring principally in the prefrontal cortex (Corlett et al.

2004; Fletcher et al. 2001; Turner et al. 2004), but the data tell us nothing about how

that calculation figures in causal inference. Semantic retrieval of causal information

and semantic retrieval of associative information lead to different patterns of

neural activation (Satpute et al. 2005), but again the data do not illuminate the

nature of that difference.

The preceding discussion has largely focused on a limited subset of causal

inference: principally, causal inference from statistical information, rather than

other information. In practice, causal inference is sensitive to many other factors,

such as knowledge of temporal features of the possible causal relations (Buehner

and May 2002; 2003; Lagnado and Sloman 2004). More generally, causal inference

is clearly influenced by prior beliefs. Strong co-variations in observed data are

more meaningful (i.e. lead to larger ratings) if people know a plausible mecha-

nism underlying the co-variation, rather than an implausible one; relatively little

effect of mechanism plausibility in prior belief occurs for weak co-variations,

perhaps because ratings are already quite low (Fugelsang and Thompson 2003).

This effect also seems to have a neural basis. Consistency between prior belief and

observed data (i.e. plausible mechanism and strong co-variation, or implausible

mechanism and weak co-variation) activates learning and memory regions of the

brain, while belief-data inconsistency activates error-correction and conflict reso-

lution areas (Fugelsang and Dunbar 2005). Most generally, causal inference is

significantly influenced by the categories and concepts that we have (Waldmann

and Hagmayer 2006). People typically do causal inference with the categories that

they have prior to learning, even when those categories are suboptimal for causal

inference.

Helen 21-Bee_bee-Chapter-21 Page Proof page 453 15.6.2009 11:04pm

psychology of causal perception 453



4 . INTERSECTIONS BETWEEN CAUSAL

PERCEPTION AND CAUSAL INFERENCE
................................................................................................................

An obvious issue centres on the relationship, if any, between causal perception and

causal inference. Are the processes identical? Is one necessary for the other? Is one a

subset of the other? Are they entirely distinct? One way to (try to) address this issue

is through developmental progressions; for example, if one type of cognition

appears before the other, then the later process presumably cannot be necessary

for the earlier one. As noted earlier, causal perception has been found in 6-month-

olds. It is at least prima facie possible that infants of a similar age make causal

inferences, particularly since at least 8-month-olds are sensitive to some statistical

patterns in their environment (Saffran, Aslin, and Newport 1996; Saffran et al.

1999). We do not know, however, the earliest age of causal inference, largely because

there are obvious methodological challenges. There will typically be many alterna-

tive explanations for data from looking-time studies that suggest causal inference,

such as the infants simply noticing predictively useful associations. We thus do not

currently know whether one process emerges before the other.

A different approach is to explore whether the processes can be separated in

adult cognition. Surprisingly, there has been relatively little research directly on this

topic. On the neurological front, Roser et al. (2005) examined causal perception

and inference in two corpus callosotomy4 patients, and found that causal percep-

tion and causal inference seem to occur in different brain hemispheres (perception

in right hemisphere, inference in left hemisphere). Independent fMRI studies on

each type of causal learning also suggest a neuroanatomical difference. Causal

perception seems to be concentrated in the temporal lobes (Blakemore et al.

2001; Fugelsang et al. 2005), while at least one significant part of causal infer-

ence—namely, error prediction and correction—seems to be largely localized in

the prefrontal cortex (Corlett et al. 2004; Fletcher et al. 2001; Turner et al. 2004).

However, despite these apparent neuroanatomical differences between causal in-

ference and perception, there are no known cases of selective loss of only one of the

types of cognition. The neurological evidence is thus relatively ambiguous: causal

perception and causal inference seem to occur at least partially in different brain

regions, but it is unknown whether they are fully dissociable.

Yet another approach is to try to find situations that prompt only causal

perception or only causal inference. Schlottmann and Shanks (1992) presented

experimental participants with many different sets of launching-type sequences.

4 This operation severs the corpus callosum: the (large) neural connection between the two

hemispheres of the brain. It is most commonly performed as a ‘last-resort’ attempt to control seizures.

Cognitive processes can sometimes be localized in these patients to one hemisphere or the other by

presenting information to only one eye at a time.
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In one set of sequences, spatio-temporal contact reliably led to movement of the

‘launched’ block only after a noticeable delay. Participants came to recognize,

presumably via causal inference, that the ‘launching’ block was a cause, but they

reported that ‘it just did not look as if it should be’ (ibid. 338) and so gave relatively

low causal perception ratings. In a second set of sequences, spatio-temporal contact

was uncorrelated with subsequent launching and instead, colour change in the

launched block was the reliable predictor. The most interesting case for these

sequences is when the second block moves after spatio-temporal contact, even

though such contact is (overall) uncorrelated with movement. In this case, parti-

cipants give high causal perception ratings for the ‘launching’ block as a cause, even

though they recognize that it is entirely unnecessary; they report that the collision

‘just looked as if it should be’ a cause (ibid. 338). This distinction between causal

perception and causal inference is found in both participant ratings and phenom-

enological experiences (ibid. 339), which supports the idea that these types of

cognition are actually separable.

Interactions between causal perception and causal inference can become quite

complicated when a causal mechanism requires some time to operate. For example,

suppose a button press causes a light to illuminate only (and always) after a three-

second interval. Now suppose that one presses that button, and then presses it again

three seconds later (when the light comes on). Causal perception says the second

button press is the cause because of temporal contiguity; causal inference (or

reasoning) says the first button press is the cause. Adults are largely able to use

mechanism information to override the causal perception in these cases, but 7-year-

old children are not (Schlottmann 1999). More generally, adult causal inference is

influenced by knowledge of the timing of underlying mechanisms, as cause–effect

relationships can be inferred even when there is a significant temporal gap between

the two (Buehner and May 2002, 2003). Adult causal perception is not influenced by

that knowledge, however, as spatio-temporally contiguous events are (almost) always

perceived causally while separated ones are not. Explicit timing knowledge in causal

inference can also shape which events are thought to be possible causes in the first

place (Hagmayer andWaldmann 2002), but has no such impact on causal perception.

In summary, there is a growing body of direct and indirect evidence that causal

perception and causal inference are different cognitive processes. The current

psychological evidence does not, however, provide much information about the

relationship between these processes. In particular, it is simply unknown whether

one is necessary for the other—either developmentally or cognitively—or they are

(relatively) autonomous cognitive processes. One barrier to fruitful psychological

research has arguably been the lack of understanding of the relevant theoretical

‘possibility space’. The space of possible relationships between causal perception

and causal inference is largely unknown, and philosophical thought could poten-

tially provide significant guidance in the development and testing of psychological

theories.
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5 . CAUSAL REASONING
................................................................................................................

Causal reasoning is also a significant part of causal cognition, and perhaps even

constitutes the majority of adult causal cognition. One great value of causal

knowledge is the myriad ways that we can use it to understand, predict, and

control the world around us (Sloman 2005). Psychological research on human

causal reasoning has historically been conducted in particular domains of applica-

tion of the causal knowledge (e.g. decision-making, categorization). In recent

years, the causal Bayes net formalism has provided a small measure of unification

to the reasoning research, but the work still largely consists of various disjoint

research endeavours.

One commonplace type of causal reasoning is the use of causal knowledge to

make decisions. Suppose I know (or believe) that X causes Y. If I desire Y, then

I might naturally decide to try to bring about X. In contrast, if I desire X, then there

is no particular value to bringing about Y directly. People are sensitive to this

distinction, and they exhibit appropriate behaviour whether they are taught the

causal structure explicitly or learn it from observed data (Hagmayer and Sloman

2005; Nichols and Danks 2007). People also appear systematically to treat their own

decisions as occurring outside the causal system; they act (except in very unusual

situations) as though their decisions are uncaused by variables in the causal

structure. Moreover, many of the experiments used to explore causal inference

employ behavioural measures of learning that depend on people’s ability to do

causal reasoning. For example, children are shown that some combinations of

blocks (‘blickets’) activate a machine, and then their causal knowledge is assessed

by asking them to make the machine go or stop (Gopnik et al. 2004). This

behavioural measure—which block the child places on the detector, or removes

from it—is discriminative of causal learning only if the children are able to use the

products of learning to make decisions. This range of findings about decision-

making based on causal reasoning has led to a formal model of decision-making

(given causal beliefs) that is based on causal Bayes nets (Sloman and Hagmayer

2006), and experimental tests are ongoing.

Causal reasoning also occurs in the context of conceptual reasoning. One

example of the relevance of causal beliefs to categories comes from the ‘causal

status effect’. If category A is partially characterized by the (possibly indeterminis-

tic) causal relation X ! Y, then individuals with X but not Y are systematically

judged as more likely to be in A than individuals with Y but not X (Ahn et al. 2000;

Rehder and Kim 2006). That is, if all As have X causing Y, then X is more important

than Y in deciding whether some new individual is an A. Rehder and colleagues

have argued that the connection between causal reasoning and concepts might be

substantially deeper. In the past forty years, psychological theories of concepts have

usually understood concepts in terms of observed features, whether prototypical
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instances (Posner and Keele 1968), sets of exemplars (Nosofsky 1984), sets of typical

features (Tversky 1977), or something else. A different idea is that at least some

categories might be defined by shared causal structure: two objects fall under the

same concept if and only if they have the same underlying causal structure (Rehder

2003a, b; Rehder and Kim 2006). Specifically, the causal model theory holds that

some concepts are defined by a common causal structure, almost always expressed

as a causal Bayes net, and that conceptual reasoning is essentially causal reasoning.

For example, causal model theory holds that similarity judgments—how similar

some new object O is to category A—are given by P(OA): the probability that an

object randomly chosen from A would be like O (Rehder 2003b), and then those

similarities are used to produce categorization judgements (i.e. P(AO)).5 Feature

inference—given that object O of type A has features F1, F2, etc., how likely it is that

O has feature G—is similarly understood as causal reasoning: probabilistic infer-

ence in a particular causal Bayes net given observations of some of the variables

(Rehder and Hastie 2004). Causal model theory has led to numerous experimental

results that demonstrate clearly the importance of causal beliefs and reasoning in

people’s concepts, though substantial open questions remain (e.g. its scope of

applicability, and its ability to represent conceptual hierarchies).

Causal reasoning is also closely connected to counterfactual reasoning, as our

causal knowledge often plays a role in assessing counterfactuals, and counterfactual

‘but for’ reasoning is frequently part of causal reasoning. Psychological research

on counterfactual reasoning has focused on both evaluation of the truth of

particular counterfactuals, and on the spontaneous generation of counterfactuals

(Mandel, Hilton, and Catellani 2005). Suppose that factors C1, . . . , Cn, and

outcome E all occur. People are more likely to judge the counterfactual ‘If

not-Ci, not-Cj . . . , then not-E’ as true to the extent that the factors in the anteced-

ent (1) are anomalous; (2) are controllable; (3) violate a social or moral norm; (4)

are close in time or space to the outcome; and/or (5) have a known mechanism

connecting them to E. The same dimensions seem to be relevant for which factors

are mentioned in the antecedent of spontaneously generated counterfactuals

(Byrne 2005; Roese 1997 provide reviews). One clear conclusion is that, although

causal and counterfactual reasoning are closely connected, they are not identical

with one another (Mandel 2003). As an example, consider an individual who takes

an unusual route home, but is hit by a drunk driver during the drive. When asked

to think about relevant counterfactuals for this individual, most people respond: ‘if

she hadn’t taken the unusual route, then she wouldn’t have been involved in the

accident’. At the same time, most people judge the drunk driver to be the principal

5 Early statements of causal model theory did not draw a clean distinction between similarity and

categorization judgements—P(O|A) and P(AO), respectively—largely because the experimental

designs often did not separate the two. More recent statements of causal model theory seem to have

converged on the version presented here (Danks 2007a).
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cause of the accident. More generally, the factors that are weighted most heavily in

counterfactual reasoning are not necessarily the ones that are judged either to have

the greatest causal influence or to be the most causally relevant. Counterfactual and

causal reasoning make use of each other, but are not the same cognitive process.

These previous lines of research all provided indirect ways to study causal

reasoning. A direct approach is to study people’s causal reasoning when they

have to determine the causes of some token event. For example, people presumably

decide which event in some sequence caused a car accident by causal reasoning

about their prior beliefs. Psychological research on this problem of causal attribu-

tion has primarily focused on whether people use knowledge of mechanisms or of

correlations to make these decisions (Ahn and Bailenson 1996; Ahn et al. 1995).

Suppose, for example, that I know that taking some medication is correlated with

car accidents, and I know a mechanism by which wet roads lead to car accidents.

When asked about the cause of a car accident involving both the medication and a

wet road, I am more likely to attribute the accident to the wetness of the road. In

general, people prefer to use mechanism information, and when both types of

information are used, they weight mechanism information more heavily (Ahn and

Bailenson 1996; Ahn et al. 1995). This result is not particularly surprising, as

knowledge of a mechanism usually implies knowledge of when it is (and is not)

likely to be active; knowledge of correlations often does not have the same type of

scope knowledge. This dependence on mechanism knowledge in causal attribution

is particularly striking, however, given that most people have an ‘illusion of

explanatory depth’ (Rozenblit and Keil 2002): an overestimation of their own

mechanism knowledge and difficulty accepting that their knowledge is limited in

this regard. In general, people believe that they can explain the mechanism M

underlying X ! Y, and then explain the mechanisms underlying M, and so on;

actually, they can rarely describe anything more thanM. Importantly, however, the

notion of ‘mechanism’ used in this research is much broader and weaker than

the notion recently advanced in the philosophy of science (e.g. Craver 2007;

Machamer, Darden, and Craver 2000). The mechanism information in Ahn et

al.’s studies principally consists of intermediate events or variables, rather than any

knowledge of how the pieces fit together (Danks 2005).

6 . CAUSALITY IN NON-HUMAN ANIMALS
................................................................................................................

A final source of information about the psychology of causation comes from

comparative studies with other animal species. Historically, animal research has

focused on classical and instrumental conditioning (described in sect. 3).
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Non-human animals can certainly predict future events, but they were not thought

to have any substantive notion of causation in the world; it was assumed that the

predictions were based entirely on learned associations, or relatively domain-

specific triggers (e.g. Lavin, Freise, and Coombes 1980). This consensus view then

shifted, particularly with respect to non-human primates, as numerous field

studies emerged that reported extensive and seemingly sophisticated tool use by

wild animals. For example, chimpanzees were found to ‘fish’ for termites by

inserting long, flexible implements (grass, reeds, sticks, etc.) into termite mounds,

waiting for the termites to latch onto the implement, and then removing it for a

tasty termite snack (Goodall 1986). Chimpanzees were even observed to modify

their tools in ways that improved their performance. These observations led many

authors to argue that some non-human animals have a relatively rich notion of

causality, and perhaps even the same concept as humans (McGrew 1992; Premack

1976). These claims were principally about non-human primates, though there

have periodically been similar claims about other non-human animals.

In recent years, however, the view that non-human animals—primates in

particular—have a rich, almost-human notion of causation has come under

increased attack. Tomasello and Call (1997) surveyed a wide range of primate

behaviours and argued that non-human primates have only very rich associations,

rather than any notion of causality that is abstract, or domain-general, or involves

unobserved forces. That is, perhaps the remarkably complex behaviour exhibited

by non-human primates arises from remarkably complex, but entirely perception-

based, associations between object shapes, action sequences, and outcomes. Povi-

nelli and colleagues have carried out a number of experiments (summarized in

Povinelli 2000) that explicitly try to determine if a chimpanzee’s learning involves

abstract causal knowledge. Many of their experiments find that chimpanzees are

seemingly insensitive to the underlying causal structure of a situation, and respond

only to superficial perceptual cues. For example, chimpanzees seem to think that a

rope that is touching an object can always be used to pull that object towards them;

they do not seem to be sensitive to the fact that a physical connection is required,

not merely physical contact (Povinelli 2000: ch. 9). If given enough trials, then

chimpanzees would of course ‘learn’ the difference between a rope on top of a

banana and one tied around the banana, but only through repeated associations

between various perceptions (rope on top vs. rope tied around) and success or

failure in obtaining the banana. The chimpanzee’s eventual success would not be

based on reasoning or learning with an abstract, domain-general notion of causa-

tion that requires physical connection to manifest. More generally, one can argue

that essentially all findings of ‘causal learning’ or ‘causal reasoning’ in non-human

animals can be explained in similar ways (Penn and Povinelli 2007).

These findings have been used to argue for a positive hypothesis about the

uniqueness of human behaviour (Penn and Povinelli 2007; Penn, Holyoak, and

Povinelli 2008; Povinelli 2000). The ‘reinterpretation hypothesis’ holds that only
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humans are able to reinterpret the surface features of the world in terms of

complex, necessarily unobserved predicates and relations (e.g. causality, support,

force, etc.). In particular, it holds that only humans can take a sequence of

perceptual inputs, and explain or describe that sequence in terms of causality.

The reinterpretation hypothesis essentially says that Hume’s problem never arises

for non-human animals, since they never (re-)conceptualize the world in terms of

unobserved causal influences. Of course, non-human animals have concepts of

varying complexity, but the reinterpretation hypothesis argues that those concepts

are always restricted to the perceptual.

Much of the work on causal learning and reasoning in humans points towards us

having a complex, multifaceted concept, or perhaps even multiple concepts of

causation (separate for causal perception and causal inference). Even if we have

only a single concept of causation, it surely involves many different dimensions,

properties, and relations. We must therefore take care that our understanding of

the notion of causation in non-human animals is not based on some simple

dichotomy of associationism vs. full-blooded causal learning/reasoning. We should

take seriously the possibility that, even if non-human animals do not have the same

notion of causality as humans, they need not be ‘mere’ associationists. Two recent

experiments with rats illustrate the large middle ground between the endpoints of

the standard, simplistic dichotomy.

One standard tenet of associationism is that observations involving a cue (e.g. a

tone) affect only the associative strengths of that cue, and perhaps also the strengths of

other cues that have reliably co-occurred with that cue in the past. If a tone has never

occurred with a light, for example, then further observations of the tone should not

(on the standard account) affect associations involving the light. This assumption

turns out to be false, as rats use observations of one cue to revise associative strengths

of cues that have never co-occurredwith the original cue (Denniston et al. 2003).6The

rats’ behaviour suggests that they are using some sort of higher-order ‘reasoning’

about the relationships between the various cues, though the exact nature of that

reasoning is currently unknown. At the very least, the ‘associationist’ processes of rats

are substantially more sophisticated than the standard account suggests.

An evenmore striking finding comes fromBlaisdell et al. (2006), who have recently

argued that rats seem to do causal reasoning using (something like) causal Bayes nets.

Consider two different causal structures: (a) X  Y ! Z; and (b) X ! Y ! Z.

Blaisdell et al. (2006) split their rats into two groups, and used classical conditioning

6 Specifically, the rats were shown a series of AXþ trials (i.e. cue A with cue X, followed by the

outcome), then a series of XYþ trials. At this point, the rats have a relatively strong association

between Yand the outcome. A subsequent series of A– trials (i.e. just cue A, and no outcome) led to a

reduced associative strength for Y. The rats’ use of the A- trials retrospectively to increase the

associative strength of X (to ‘explain’ the AXþ trials) is not novel. The surprising part is that the rats

seemingly propagate that change outwards (in some sense) retrospectively to revise their learning

from the XYþ trials: increased strength for X means less learned strength for Y.
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to ‘teach’ each group both edges in one of the causal structures. For example, group

(a) received repeated trials ofY followed byX, and separate trials ofY followed byZ; in

both groups, X ¼ tone; Y ¼ light; and Z ¼ food. Now consider an intervention to

bring about X. In the common-cause structure (a), the intervention will break the

X Y causal connection, and so neither Y nor Z will change; in the chain structure

(b), the intervention will not change the causal structure, and so both Y and Z will

(probabilistically) change. Both groups of rats were provided with such an ‘interven-

tion’ in the form of a lever that produced the tone X. Rats that ‘learned’ the common-

cause structure were significantly less likely to check for the food after pressing the

lever, compared to rats that ‘learned’ the chain structure. That is, the rats behaved as if

they knewwhether their actions to produceXwere likely to bring about a change inZ,

and they acted consistently with the predictions of a causal Bayes net model. This

finding does not, of course, prove that rats have causal Bayes nets ‘in their heads’.

There are more minimal interpretations of this result, and prediction given interven-

tions is only one aspect of causal Bayes nets (Penn and Povinelli 2007). This finding

does show, however, that rats are more than just simple associationists: they seem to

be able to integrate distinct pieces of observational evidence into a single, relatively

coherent structure, and then use that observational evidence to make predictions

about the outcomes of interventions (see also Leising et al. 2008).

Causal learning and reasoning in humans—the full array, scope, and types—

seem to be unique among the animal kingdom, and the nature and source of this

uniqueness is the subject of ongoing debate (e.g. Penn, Holyoak, and Povinelli 2008

and accompanying commentaries). Non-human animals are capable of remarkably

sophisticated behaviour that takes advantage of causal relations in the world to

help them reach their goals, but seemingly always in ways that differ crucially,

though not always obviously, from human behaviour. Research on non-human

animals is nonetheless potentially able to provide some insight into the human

causal learning and reasoning precisely by revealing the multifaceted nature of our

causal concept(s) and cognition. The ways in which non-human animals are more

than simple associationists potentially indicate some of the components of causal

cognition in humans. One significant open question is how to use philosophical

research on the many dimensions and uses of causation to inform research on

which components of human causal cognition are found in non-human animals.

7 . CONCLUSION
................................................................................................................

Psychological research on causation has expanded rapidly in the last twenty years,

and it seems to be one of the ‘hot areas’ in cognitive science right now. In these
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years, there have been significant theoretical and empirical advances on causal

perception, inference, and reasoning, though many open questions remain in all

three areas. One striking feature of this research is that it has almost all focused on

causal cognition in isolation. For example, an experiment will ask participants to

learn some causal structure from observed cases, but then ask only for explicit,

verbal causal strength judgements. People are almost never asked to make mean-

ingful decisions using the causal information that they learn. In contrast with these

laboratory experiments, causal cognition ‘in the wild’ cannot easily be isolated

from other cognitive processes. One of the most significant challenges facing

psychologists in coming years is thus to understand better the relationship between

causal cognition and other cognitive processes, such as decision-making, linguistic

inferences/pragmatics, and social behaviour.

FURTHER READING

Sloman (2005): Describes many of the ways that causal knowledge and reasoning

are relevant to other parts of cognition. Provides an overview of causal Bayes nets

and defends them as a psychological account of causal knowledge.

Michotte (1963): Classic text on causal perception. Includes a wide range of

experiments on the launching effect.

Scholl and Tremoulet (2000): More recent review article on the launching effect.

Argues that causal perception is modular (or close to it).

Gopnik et al. (2004): Major paper defending the causal Bayes net view of causal

representation and learning. Describes much of the developmental evidence about

causal learning.

Danks (2007b): Provides an overview and unification of all the major theories of

causal inference.

Gopnik and Schulz (2007): Edited book covering both causal inference and

causal reasoning. Most papers either use, or respond to theories that use, causal

Bayes nets.

Sloman and Hagmayer (2006): Presents a theory of decision-making based on

causal knowledge, represented as causal Bayes nets.

Mandel (2003): Surveys much of the empirical data about causal and counter-

factual reasoning, and argues that they are importantly distinct.

Povinelli (2000): Describes many of the experiments that expose the limits of

causal knowledge in non-human primates. Carefully explores methodological

challenges facing research on animal cognition.

Penn and Povinelli (2007): Critical review of research on causal cognition in

non-human animals. Questions whether non-human animals have a rich notion of

causation.
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