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1. Introduction 

A wide variety of psychological models have been proposed to explain people’s 

categorization of novel instances (e.g., Medin & Schaffer, 1978; Minda & Smith, 2001, 2002; 

Nosofsky, 1984, 1986, 1991; Nosofsky & Zaki 2002; Zaki, et al., 2003). That is, given that I 

have a range of possible categories, C1, …, Cn and I observe a novel case X, what is the 

probability that I will classify X into one or another of the n possibilities? Essentially all of these 

theories share an important structural similarity: they all first calculate some “similarity” or 

“representativeness” measure of X for each Ci, and then combine those measures in some way to 

produce a probability (possibly of 1.0 on one particular category). I focus here on the first step in 

this process, and take no particular stance on the ways in which these functions are integrated to 

produce a precise behavioral response. The principal advantage to this approach is that it enables 

us to focus on single categories, and avoid the theoretically (and experimentally) challenging 

task of determining the second-stage behavior. In addition, results about equality between 

theories in the first stage imply that those theories will remain equal for particular versions of the 

second stage. 

More precisely, suppose we have a list of m binary properties for a particular case. The 

first-stage functions, I will refer to them as “similarity measures,” are thus functions from m-

dimensional binary vectors to non-negative real numbers. The similarity measures in all of these 
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Categorization held at the Center for Advanced Study in the Behavioral Sciences. This research was partly 
supported by grants NCC2-1399 and NCC2-1377 from the National Aeronautics and Space Administration. 
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psychological theories are intended to be scale-invariant: for a given similarity measure g(X), 

identical predictions would be obtained if we instead used K × g(X), for all positive K. Similarity 

measures that have been normalized so that the sum over all possible cases is 1 can be 

interpreted as probability distributions over the possible cases. Moreover, any probability 

distribution over the possible cases can also be interpreted as a (normalized) similarity measure. 

Thus, the focus here will be on connecting similarity measures and probability distributions. 

There are essentially three classes of similarity measures that have been proposed in the 

psychological literature: exemplar, feature-matching, and causal model theories. The first two 

have dominated the psychological landscape for the past twenty years, and there has been some 

prior work on establishing the conditions in which they behave similarly (Nosofsky, 1990). In 

this paper, I will focus on exemplar and feature-matching models, but will not directly try to 

show when the theories are identical or differ. Instead, I connect them with probabilistic models 

proposed elsewhere, primarily computer science and statistics. In particular, I will show that the 

similarity measures defined by the theories are isomorphic to sets of probability distributions that 

are easily characterized using probabilistic models. By placing these theories into that general 

framework, we can then quickly and easily establish connections between these two classes of 

theories, and also causal model theory, which uses the framework of Bayesian networks. 

 

2. Feature Matching Models and Markov Random Fields 

In this section, I first provide a precise definition of a prototype model, here called a 

feature matching model, then introduce the framework of Markov Random Fields (MRFs), and 

show that feature matching models are isomorphic to a subset of MRFs. More precisely, the 

probability distributions defined by the normalized similarity measures for feature matching 
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models are the same probability distributions describable using MRFs and an additional 

constraint. 

Feature matching models (Minda & Smith, 2001, 2002) assume that a category can be 

identified with some prototypical instance, though they do not assume that the prototype must 

ever have been actually observed. The intuition behind a feature matching model is that novel 

instances will be judged more likely to be a member of a category as we increase the number of 

properties (features) shared by the novel instance and the prototype. In this section, we consider 

a generalization of this model that allows for interactions between the features. In particular, we 

might think that certain combinations of properties are particularly important, and so our 

similarity measure must be able to incorporate those second-order features as well. 

To make all of this precise, let X by the case we have just been shown, and let E be a 

prototypical case for category C. Since we are assuming that all of the properties are binary, we 

can assume (without loss of generality) that the prototypical case is “all features are present.”1 

Define δ(q) = 1 if X and E have the same value for the q-th property, and 0 otherwise.2 We then 

define a feature matching model S as any model of the form: .( ) ( ) ( ) ( )[∏∏
= =

−=
m

i

m

ij

ji
ijsXS

1

1 δδ ]

                                                

3 (Note 

that this particular characterization is not normalized.) That is, the similarity of X is the product 

of sij for every i, j pair (possibly i = j) in which X and E differ on at least one of the dimensions. 

We assume only that all sij are positive, though the model is only sensibly applied to 

categorization data if sij ≤ 1. sij values smaller than 1.0 indicate increasingly important i, j 

interactions; sij = 1 indicates no i, j interaction at all. We are here concerned with models of 

 
1 This assumption is entirely one of convenience for notation. All of the claims and proofs can straightforwardly be 
extended for different prototypical cases. 
2 Under the assumption that E = “all present,” this is just the standard delta-function for the q-th dimension of X. 
3 Sometimes, weighted city block distance measures are used, instead of a multiplicative measure. These versions 
are isomorphic to the logs of probability distributions. 
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representativeness ratings for all possible cases, where the ratings are only defined up to a 

multiplicative constant. Therefore, we will say that “there is a feature matching model for ratings 

R” iff there exists a feature matching model S such that, for all X, S(X) ∝ R(X). Similarly, there is 

a probability distribution for the ratings R iff for all X, P(X) ∝ R(X).  

A Markov Random Field (MRF) is composed of two components: an undirected graph 

over the variables, and a probability distribution over those same variables. For a particular 

undirected graph, we define a clique to be a set of variables S such that every pair of variables in 

S is connected by an edge. A maximal clique is a clique T such that T ∪ {A} is not a clique for 

all A ∉ S. The Markov assumption for an MRF states: the probability distribution factors into the 

product of functions over the maximal cliques in the undirected graph. That is, if G1, …, Gq are 

the maximal cliques for a particular undirected graph G, we can express the distribution as 

( ) ( )∏
=

=
q

i
i Xg

Z
XP

1

1 , where gi(X) is a function only of the X-values of the variables in clique Gi, 

and Z is a normalization constant. These g functions are frequently called the clique potentials. 

Because we can always renormalize the Markov decomposition for an MRF, the clique 

potentials in an MRF are defined only up to a multiplicative constant. Therefore, we can assume 

(without loss of generality) that g(all present) = 1 for all clique potentials.4 We further define X- 

to be the set of variables that are absent in case X, and g(S+) to be the clique potential value for 

the case in which only the variables in S are present (and so g(∅+) is the clique potential value 

for the “all absent” case). A clique potential then has the “g-decomposition property” iff: 

( ) ( )
( )
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4 More generally, if E is not the “all present” case, then we assume g(E) = 1; that is, every clique potential equals 1 
for the prototype case. The g-decomposition property must then be relativized to the particular E in obvious ways. 
All of the proofs hold under this generalization.  
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This property appears quite complex, and might seem quite stringent. We can prove, however, 

that it holds of some important classes of cliques. (All proofs are provided in the Appendix.) 

Theorem 1: The g-decomposition property holds for all cliques with 1 or 2 

variables. It holds for only some cliques with 3 or more variables. 

Given all of these definitions, the keystone theorem of this section is: 

Theorem 2: [There exists a feature matching model S for ratings R] iff  

[there exists a probability distribution P for R such that (i) there exists an MRF U 

that perfectly represents P; and (ii) the g-decomposition property holds for every 

(maximal) clique potential in U]. Moreover, for a given feature matching model S, 

there is a unique corresponding probability distribution, and vice versa. 

That is, if there is a feature matching model for those ratings R, then we can also find a MRF U 

such that P(X | U) is an equally good model of the ratings. Thus, there is not (from a theoretical 

point of view) any distinction between these theories. 

Causal model theory predicts that ratings should be well-modeled by P(X | B), where B is 

a Bayesian network over the variables (not defined in this paper). Therefore, we also derive three 

important corollaries about the relationship between them and feature matching models: 

Corollary 1: If B is a Bayes net tree, then there is a feature matching model S such 

that S(X) ∝ P(X | B) for all X. 

Corollary 2: There exists a probability distribution that can be modeled by a 

Bayes net (e.g., if the Bayes net has an unshielded collider), but for which there is 

no feature matching model such that S(X) ∝ P(X | B) for all X. 
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Corollary 3: There exists a probability distribution P that cannot be modeled by a 

Bayes net, but for which there is a feature matching model such that S(X) ∝ P(X) 

for all X. 

That is, the probability distributions that can be captured by Bayes nets and by MRFs/feature 

matching models are overlapping, without inclusion in either direction. There are sets of ratings 

for which there are both MRF and Bayes net models, and ratings that can only be modeled by 

one or the other model. 

 

3. Exemplar Models 

An exemplar model (e.g., Medin & Schaffer, 1978; Nosofsky, 1984, 1986, 1991; 

Nosofsky & Zaki 2002; Zaki, et al., 2003) presumes that we have a list of exemplar instances, 

and the rating is the weighted average similarity measure for X compared to each exemplar as 

though the exemplar is the prototype for a feature matching model and the si-parameters are held 

fixed. More precisely, define Ea(i) to be the value of the i-th dimension for exemplar Ea; Wa to be 

the (positive) relative weight of exemplar Ea; and eq(A, B) = 1 if A and B are equal, and 0 

otherwise. Then the similarity measure for novel instance X given exemplars E1, …, Er is given 

by: ( ) ( ) ( )( )[ ]∑ ∏
= =

−=
r

a

m

i

iEXeq
ia

aisW
r

XF
1 1

,11 .5  

There is a straightforward interpretation of exemplar similarity measures in terms of 

noisy measurements. Define a noisy measurement model to be one in which our measurements of 

each property’s value are subject to some noise, and we correctly measure the i-th dimension 

with probability qi. Further suppose that we have a probability distribution P* over a set of 

                                                 
5 Again, weighted city block distances can be used instead of a multiplicative measure. 
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possibly occurring instances. For this situation, we can provide an alternate characterization of 

the exemplar similarity measure: 

Theorem 3: [There exists an exemplar model F for ratings R] iff [there exists a 

noisy measurement model M and probability distribution P*(E) over the 

exemplars such that P(X | P*, M) is appropriate for R]. 

That is, there is a straightforward equivalence between exemplar similarity measures and models 

that calculate the probability of observing X given that (i) one of the exemplars (drawn from 

probability distribution P*) actually occurred, and (ii) our measurements are noisy. As shown in 

the proof, the noisy measurement model M corresponds to the s-parameters in the exemplar 

model F, and the probability distribution P* corresponds to the weights in F. 

Exemplar similarity measures have also been extended to include fragments of 

exemplars. Specifically, we allow exemplars to be undefined on certain dimensions, and we 

exclude those dimensions from the similarity product for that exemplar fragment. Note that this 

extension is not equivalent to simply expanding the set of exemplars to include all possible 

completions. In the context of a noisy measurement model, an undefined dimension implies that 

we do not know the true value, and so we should exclude that dimension from the calculation of 

the probability. Therefore, we can straightforwardly extend Theorem 3 to hold for exemplar 

fragment similarity measures. These models are equivalent to determining the probability of 

observing the current instance, given noisy measurements and a probability distribution over the 

exemplars, but where we may not have complete information about all of the exemplars. 
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4. Conclusion 

This paper has focused on formal results connecting these similarity measures to other 

probabilistic models. These connections can now be used to support various cross-theoretical 

comparisons, as well as improved design of experiments to (potentially) distinguish the theories. 

A broader discussion of the impact of these results can be found in Danks (forthcoming), but I 

address one important issue in closing. Prototype/feature matching and exemplar models of 

categorization are often presented as stark contrasts to one another. One striking feature about 

the theoretical results presented here is that the underlying structure of both of these 

psychological theories is fundamentally the same. Both are isomorphic to computing P(X 

occurring | Category model). They simply disagree about the nature of the category model: it is 

an MRF for feature matching models, and noisy measurement of cases in exemplar models. 

Thus, we can perhaps think of human categorization not as feature matching versus exemplar 

(versus causal model theory), but rather as the same process operating on different category 

concepts, depending on background knowledge, historical experiences, and so on. Moreover, 

there is a plausible intuitive story to be told about why our models for a particular category might 

change over time: we start with only a few instances of a category (exemplar model); as we 

observe more instances, we learn a correlation structure for the features (an MRF/feature 

matching model); and in some cases, we finally come to understand the asymmetric causal 

relationships underlying the category (a causal Bayes net/causal model theory). Important details 

(both conceptual and computational) are, of course, missing from this story; an important future 

research project is to attempt to fill in the gaps and test it empirically. 
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Appendix  

Proofs of Feature Matching Model Theorems: 

Theorem 1: The g-decomposition property holds for all cliques with 1 or 2 variables. It holds for only some cliques 

with 3 or more variables. 

Proof of Theorem 1: The g-decomposition property states that the clique potential can be expressed as: 

( ) ( )
( )

( ) ( )
{ }( ) ( )⎥⎦

⎤
⎢
⎣

⎡

+∅+
++

+
+∅

=∀ ∏∏∏
−∈ +=−∈ Xi

m

ijXi gjig
jgig

ig
gXgX

1 ,
. For all clique potentials, we set g(all present) = 1 by 

choice, which satisfies this property. Therefore, we need only concern ourselves with those X such that at least one 

variable is absent. 

Clique with 1 variable: Let g be an arbitrary clique potential. The only relevant case is (0): the variable is absent. 

The second product is necessarily empty, and the first product is just g(0)/g(1). Since g(1) = 1, the g-

decomposition property holds for this clique potential. 

Clique with 2 variables: Let g be an arbitrary clique potential. The right-hand side of the g-decomposition property 

for (1,0) is equal to: 
( )
( )

( ) ( )
( ) ( )0011

1001
01
00

gg
gg

g
g

× . Since g(11) = 1, this product equals g(10). Similarly, the g-

decomposition property holds for (0,1). Now consider (0,0). The right-hand side equals: 

( )
( )

( )
( )

( ) ( )
( ) ( )0011

1001
10
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01
00

gg
gg

g
g

g
g

×× . This product must equal g(00). Therefore, the g-decomposition property 

holds for g. 

Clique with 3 variables: Let g be an arbitrary clique potential. The right-hand side of the g-decomposition property 

for (0,0,0) equals: 
( )
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g
g

g
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××××× , 

which equals: 
( ) ( ) (
( ) ( ) ( )

)
011101110
001010100

ggg
ggg

. Clearly, this value need not equal g(000), and so the g-decomposition 

property does not hold for all g. At the same time, the g-decomposition property must hold for some g, since 

there must be some clique potential for the probability distribution defined by the feature matching model with 

three features and all possible second-order features. 
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A similar procedure clearly demonstrates that some clique potentials for more than 3 variables do not have the f-

decomposition property, but some do (namely, those that correspond to some feature matching model). ■ 

 

Theorem 2: [There exists a feature matching model S for ratings R] iff [there exists a probability distribution P for 

R such that (i) there exists a MRF U that perfectly represents P; and (ii) the g-decomposition property holds for 

every (maximal) clique potential in U]. Moreover, for a given feature matching model S, there is a unique 

corresponding probability distribution, and vice versa. 

Proof of  

Theorem 2: We prove this theorem using a series of lemmas. The first lemmas demonstrate conditional uniqueness. 

The later lemmas demonstrate existence (i.e., that the conditional holds). Note that the proofs demonstrate only that 

S ∝ P, and exclude the ratings entirely. If they are proportional to each other, then if one is proportional to the 

ratings, so is the other. 

Lemma 1: For every feature matching model S, if there is a probability distribution P such that S(X) ∝ P(X), then P 

is unique. 

Proof of Lemma 1: Let P1 and P2 be such that K1 × P1(X) = S(X) = K2 × P2(X), for all X. Therefore, 

. But since ( ) ( )∑∑ ×=×
XX

XPKXPK 2211 ( ) ( )∑∑ ==
XX

XPXP 21 1 , it must be the case that K1 = K2. 

Therefore, for all X, P1(X) = P2(X). ■ 

We will now use PS to denote the (possibly non-existent) unique probability distribution for a particular S. 

Lemma 2: For all probability distributions P, if there exists a feature matching model S such that S(X) ∝ P(X), then S 

is unique. 

Proof of Lemma 2: Let S1 and S2 be such that K1 × S1(X) = P(X) = K2 × S2(X), for all X. We first show that K1 = K2. If 

A is the “all present” instance, then S1(A) = 1 = S2(A) by definition of feature matching model. Therefore, K1 = 

1/P(A) = K2. Now, we must prove that, for all i, j, sij
1 = sij

2. Recall that S+ is the case in which only the features in S 

are present, and so ∅+ is the “all absent” case. For all i, we have: 
( )
( )

( )
( )

1

11

11
iis

iSK
SK

iP
P

=
+
+∅

=
+
+∅

, and similarly for 

sii
2. Therefore, since the left-hand side is the same for both sii

1 and sii
2, they are equal for all i. We also have, for all i, 
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q: 
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=
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+
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+
+

, and similarly for siq
2. Since sii

1 = sii
2, that implies that siq

1 = siq
2. 

Therefore, S1 and S2 have identical parameters. ■ 

Lemma 3: If S is a feature matching model, then (i) there exists a Markov field U such that (ii) U perfectly represents 

PS (that is, for all X, S(X) ∝ P(X | U)), and (iii) every maximal clique potential has the g-decomposition property. 

Proof of Lemma 3: Proof by construction: given a feature matching model, we will construct a Markov field U that 

has the necessary properties. Let U be the Markov field such that: 

1. There exists node Xi in U iff feature Fi exists in S; 

2. Xi – Xj in U iff Sij ≠ 1; 

3. Let Ni = # of (maximal) cliques containing Xi, and Nij = # of (maximal) cliques containing both Xi and Xj. 

Then the clique potential for clique Ci is given by: ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]∏∏
∈

−

∈

−=
i
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i

j

Ckj

kj
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j
Njji ssCg

,

1111 δδδ . 

Now, we must show that U, as constructed by the above method, defines a probability distribution such that, for all 

X, S(X) = K * P(X | U). Clearly, the construction of the Markov field is well-defined, and each clique potential is 

well-defined. Therefore, we can normalize the product of clique potentials to get a well-defined probability 

distribution by dividing through by ( )∑∏=
X i

ii CgZ .  

Let K = Z, and consider an arbitrary case X: ( ) ( ) ( )∏∏ =×=×
i

ii
i

ii CgCg
Z

KUXPK 1| . Substituting in 

the clique potentials, this equals: ( ) ( )[ ] ( ) ( ) ( )[∏ ∏∏ ⎥
⎦

⎤
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δδδ ] . Every variable Xj is part of at 

least one clique, and Xj and Xk are part of the same clique iff sjk ≠ 1. Using these two facts, we can reorder the 

product to get:  
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The term in the first set of brackets is either equal to 1 (if Xj is present) or sj
[1/N_j] (if Nj is absent). Thus, when we 

multiply the Nj instances of that term together (since Nj is defined to be the number of distinct cliques in which j 

occurs), we get either 1 (if present) or sj (if absent). By similar reasoning, the term in the second set of brackets is 
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always either 1 or sjk. We can thus rewrite the product as: ( ) ( )[ ] ( ) ( ) ( )[ ]∏∏
≠<

−−

1&:,

11

jkskjkj

kj
jk

j

j
jj ss δδδ . Now, notice that, 
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changing the value of the expression, multiply the product by ( ) ( ) ( )[ ]∏
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Now, we must show that all of the maximal clique potentials have the g-decomposition property. By construction, 

the clique potential value for an arbitrary X is given by: ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]∏∏
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++

. Substituting these values back into the earlier equation for g(X), we can see that 

the g-decomposition property clearly holds for this (arbitrary, maximal) clique potential. ■ 

We now must prove the other direction of the biconditional. We do this in two steps: first, considering only a single 

maximal clique, and second, assembling the cliques into a full Markov field U. 

Lemma 4: For a given probability distribution P and single-clique MRF U that perfectly represents P, if the clique 

potential has the g-decomposition property, then there is a feature matching model S such that S(X) ∝ P(X) for all X. 

Proof of Lemma 4: Proof by construction: we show how to construct an appropriate feature matching model: 

1. Fi in S iff Xi in U; 

2. Set the sii and sij values as: 
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Clearly, this feature matching model is well-defined. And since the g-decomposition property holds for g, we have: 
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gXg

XjiXi
ij

Xi
ii

XjXiXi

==
+∅+

++
+
+∅

= ∏∏∏∏
∈<−∈−∈∈−∈−∈ ;; ,

. 

Therefore, S(X) ∝ g(X) ∝ P(X) for all X. ■ 

Lemma 5: For given probability distribution P and perfect Markov field U, if there is a feature matching model for 

every maximal clique in U, then there is a feature matching model for P. 

Proof of Lemma 5: We use sii(Cj) to denote the value of sii in the feature matching model for maximal clique Cj, and 

define sii(Cj) = 1 if Xi ∉ Cj. We define sij(Ck) similarly. Now, let ( )∏=
j

jiiii Css  and ( )∏=
j

jikik Css . These 

parameters are clearly well-defined. We will show that the resulting feature matching model, denoted S*, is 

appropriate for P. 

Because there is a perfect MRF U for P, we have ( ) (∏=
i

ii Cg
Z

XP 1 )

]

 for all X. Note that each clique potential 

in U is determined only up to a multiplicative constant, since we normalize the product to get a probability 

distribution. Therefore, we choose (without loss of generality) the clique potential functions such that gi(all present) 

= 1 for all i. Let K = Z, and consider K × P(X). The K and 1/Z terms cancel out, and then—since there is a feature 

matching model for every gi—we can substitute the clique feature matching models into the product to get: 

.  ( )( ) ( )[ ] ( )( ) ( ) ( )[ ]∏ ∏∏ ⎥
⎦

⎤
⎢
⎣

⎡

∈

−

∈

−

i iiC Ckj

kj
ijk

Cj

j
ijj CsCs

,

11 δδδ

Reordering the product some, we get: . Consider the 

product over j. For any arbitrary j, each term in the product is either 1 (if X

( )( ) ( )[ ] ( )( ) ( ) ( )[∏ ∏∏ ∏
> ∈

−

∈

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

jkj Ckji

kj
ijk

j Cji

j
ijj

ii

CsCs
, ,:

1

:

1 δδδ

j is present) or sj(Ci) (if Xj is absent). A 

similar argument holds for the product over j, k. But since we are taking the product over all Ci for j (k), we can 

rewrite the product as: ( ) ( )[ ] ( ) ( ) ( )[ ]∏∏
>

−−

jkj

kj
jk

j

j
jj ss

,

11 δδδ , which is simply the feature matching model prediction 

for S* for arbitrary X. ■ 

 

Theorem 2 follows immediately from Lemmas 1-5. ■ 
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Corollary 1: If B is a Bayes net tree, then there is a feature matching model S such that S(X) ∝ P(X | B) for all X. 

Proof of  

Corollary 1: Let P denote the probability distribution defined by B. If B is a Bayes net tree, then since there are no 

unshielded colliders, there is a MRF U with the same skeleton that perfectly represents P. Since B is a tree, that 

skeleton has no triangles, and so every maximal clique has at most 2 variables. Therefore, by Theorem 1, the g-

decomposition property holds of all of the maximal cliques in U. Therefore, by  

Theorem 2, there is a feature matching model that is proportional to U. Hence, there is a feature matching model that 

is proportional to P. ■ 

 

Corollary 2: There exists a probability distribution that can be modeled by a Bayes net (e.g., if the Bayes net has an 

unshielded collider), but for which there is no feature matching model such that S(X) ∝ P(X | B) for all X. 

Proof of Corollary 2: Let P denote the probability distribution defined by B. If B contains an unshielded collider, 

then there is no MRF U such that U perfectly represents P. Therefore, there is no feature matching model such that 

S(X) ∝ P(X) for all X. ■ 

 

Corollary 3: There exists a probability distribution that cannot be modeled by a Bayes net, but for which there is a 

feature matching model such that S(X) ∝ P(X) for all X. 

Proof of Corollary 3: Let P be the probability distribution that is perfectly represented by the MRF F1 — F3 — F2; 

F1 — F4 — F2. There is no Bayes net for this distribution (since every possible joint edge orientation results in either 

a cycle or a collider). But the maximal cliques are all of size 2, and so they all have the g-decomposition property, 

and so there is a feature matching model for this distribution. ■ 

 

Proofs of Exemplar Model Theorems: 

Theorem 3: [There exists an exemplar model F for ratings R] iff [there exists a noisy measurement model M and 

probability distribution P*(E) over the exemplars such that P(X | P*, M) is appropriate for R]. 

Proof of Theorem 3: For both directions of the biconditional, we will simply demonstrate that F(X) ∝ P(X | P*, M).  
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(⇒) Assume there exists an exemplar model F with s-parameters and weights W. We will further assume that the 

weights are normalized so that ΣW = 1. Define the noisy measurement model to have noise parameters qi = 1 / (1 + 

si), and set P*(Ea) = Wa. Since the s-parameters are positive, the q-parameters will fall in [0,1] as required. Since the 

weights are positive and normalized to sum to 1, they define a probability distribution. P(X | P*, M) is just the 

weighted average over Ea of P(X | Ea, M), weighted by P*(Ea). In addition, because the noise parameters are 

independent of each other, we can factor each Ea-specific probability, resulting in: P(X | P*, M) = 

( ) ( )(∑ ∏
= =

r

a

m

i
aia MiEXPEP

r 1 1

,|*1 ) . If Xi = Ea(i), then this probability is given by qi; otherwise, it is given by (1 

– qi). Therefore, if we also substitute in the P*(Ea) values, we can rewrite this expression as: 

( ) ( )( ) ( ) ( )([∑ ∏
= =

−−
r

a

m

i

iEXeq
i

iEXeq
ia

aiai qqW
r 1 1

,1, 11 )] . Now divide this expression by . (Since we are only 

concerned with proportionality, it doesn’t matter if we divide by a positive constant.) Because q

∏
=

=
m

j
jqZ

1

i will cancel out 

when X and Ea agree on dimension i, we can rewrite this expression as: 
( )

∑ ∏
= ≠

−r

a iEXi i

i
a

ai
q

qW
r 1 :

11
. Substituting in the 

value for qi yields: 
( )

∑ ∏
= ≠

r

a iEXi
ia

ai

sW
r 1 :

1
, which is just the exemplar similarity measure.  

(⇐) Assume that there exists a noisy measurement model M and probability distribution P*. Define the exemplar 

similarity measure using the same instances, let 
i

i
i q

qs −
=

1
, and set Wa = P*(Ea). (Since qi is a probability, it is 

less than or equal to 1, and so si will be non-negative.) Because this is simply the inverse of the qi definition in the 

first half of the proof, and every step in the first half is reversible, this exemplar similarity measure must be 

proportional to P(X | P*, M). ■ 
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